期刊文献+

带三阶粘性项的高维广义KdV-Burgers型方程组的整体解 被引量:1

THE GLOBAL SOLUTION OF THE SYSTEM OF MULTIDIMENSIONAL GENERALIZED KDV-BURGERS EQUATIONS WITH THIRD ORDER VISCOUS TERM
下载PDF
导出
摘要 考虑了一类带三阶粘性项的高维广义KdV-Burgers型方程组的周期边值问题和初值问题,利用先验估计及Galerkin方法,证明了所论问题整体解的存在性、唯一性和正则性。在一定条件下讨论了这些问题的解当t→+∞时的渐近行为,给出了一类高维广义KdV-Burgers型方程解“爆破”的充分条件。 This paper deals with the periodic boundary value problem and the initial value problem for the system of multidimensional generalized KdV-Burgers equations with third order viscous term.The existence and uniqueness of the global solution for these problems are proved by the Galerkin method and a priori estimation.The asymptotic behaviour of the solution for the problem is investigated under certain conditions.The sufficient conditions are given for the existence of the blowing-up solution for a class of systems of multidimensional inhomogeneous generalized KdV-Burgers equations.
作者 尚亚东
出处 《甘肃科学学报》 1996年第2期1-9,共9页 Journal of Gansu Sciences
关键词 周期边值问题 整体解 KDV-B方程 非线性波动 KdV-Burgers equation BBM-Burgers equation Periodic boundary value problem Initial value problem Global solution Galerkin method Asymptotic behavior Blow up
  • 相关文献

参考文献2

二级参考文献6

  • 1陈国旺,数学年刊.A,1988年,9卷,2期,139页
  • 2陈国旺,应用数学学报,1988年,11卷,1期,79页
  • 3洪乃端,厦门大学学报,1987年,26卷,2期,147页
  • 4陈庆益,数学研究与评论,1983年,3卷,4期,103页
  • 5周毓麟,中国科学.A,1982年,2期,116页
  • 6Sun Hesheng,J PDE,1988年,1卷,1期,67页

共引文献8

同被引文献13

  • 1Bateman H. Some Recent Researches on the Motion of Fluids [J]. Monthly Weather Rev. , 1915,43 : 163-170.
  • 2Burger J M. A Mathematical Model Illustrating the Theory of Turbulence[J]. Advan. Appl. Mech. , 1948,1 : 171-199.
  • 3Hopf E. The Partial Differential Equation Ut + UUx =μUxx [J]. Comm. Pure App. Math. , 1950,3 :201-230.
  • 4Cole J D. On a Quasi-linear Parabolic Equations Occurring in Aerodynamics[J]. Quart. Appl. Math. , 1951,9 :225-236.
  • 5Ozis T,Aslan Y. The Semi-approximate Approach for Solving Burgers' Equation with High Reynolds Number[J]. Appl. Math. Comput., 2005,163: 131-145.
  • 6Abbasbandy S,Darvishi M T. A Numerical Solution of Burgers' Equation by Modified Adomian Method[J]. Appl. Math. Comput. ,2005,163:1 265-1 272.
  • 7Aksan E N,Ozdes A. A Numerical Solution of Burgers' Equation[J]. Appl. Math. Comput. , 2003,156 : 395-402.
  • 8Ozis T, Ozdes A. A Direct Variational Methods Applied to Burgers' Equation[J]. Comput. Appl. Math. , 1996, 71: 163- 175.
  • 9Aksan E N. A Numerical Solution of Burgers'Equation by Finite Element Method Constructed on the Method of Diseretization in Time[J]. Appl.Math. Comput. , 2005,170: 895-904.
  • 10Aksan E N. Quadratic B-spline Finite Element Method for Numerical Solution of the Burgers' Equation[J]. Appl. Math. Comput. ,2005,165:237-249.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部