摘要
对连续流及其时间1映射的非游荡点的关系进行了研究.在指出有关定理证明的不当之处后,给出了连续流及其时间1映射的非游荡集相等的一个充分条件;同时对紧致二维流形证明了其上的连续流与其时间1映射的非游荡集是相等的.
The relationship of non - wandering points for a continuous flow and its time - one map is studied. A sufficent condition is given indicating that non - wandering sets are equal for a continuous flow and its time- one map, after a mistake in a paper is pointed out it is showed that non - wandering sets for them are equal on compact two-dimensional manifold.
出处
《东北师大学报(自然科学版)》
CAS
CSCD
北大核心
2006年第1期18-21,共4页
Journal of Northeast Normal University(Natural Science Edition)
基金
国家自然科学基金资助项目(10371030)
关键词
连续流
时间1同胚
非游荡点
紧致二维流形
continuous flow
time - one homeomorphism
non - wandering points
compact two - dimensional manifold