期刊文献+

改进遗传算法在优化油田布井中的应用 被引量:4

Application of improved genetic algorithm to oilfield well array optimization
下载PDF
导出
摘要 针对目前中国在油气藏布井方式上常采用规则井网的局限性,提出了一种基于适应值共享机制的小生境改进遗传算法。该算法具有强大的全局搜索性能和不要求目标函数连续、可微等特点。将其应用于油田布井当中,以获得最大累积产量为目标,对油井位置进行了优化,取得了良好效果。结果表明,利用改进遗传算法完全能够满足油田开发过程中多决策变量的选择、组合及优化的需要,是一种行之有效的新方法。 An improved genetic algorithm (GA) of niche based on fitness - sharing mechanism was advanced to overcome the main limitations of regular well pattern in well array way of oil-gas reservoir at home. This algorithm has a strong global - searching performance and has no requests for the continuity and differentiability of object function. This technology was used for well placement optimization with the object of maximizing the cumulative oil production. Good result proved that this technology could completely meet the demands of selection, combination and optimization of multi-decision variables in the process of oilfield development and will be a new available method.
出处 《油气地质与采收率》 CAS CSCD 北大核心 2006年第2期68-71,共4页 Petroleum Geology and Recovery Efficiency
基金 "高等学校优秀青年教师教学科研奖励计划(TRAPOYT)"资助
关键词 遗传算法 小生境技术 最优化 布井 累积产量 genetic algorithm, niche technology, optimization, well array, cumulative oil production
  • 相关文献

参考文献5

  • 1Baris Guyaguler, Roland N Home, Leah Rogers, et al. Optimization of well placement in a gulf of Mexico waterflooding project [ J ].SPE 63221,2000.
  • 2Yan Pan, Roland N Home. Improved methods for multivariate optimization of field development scheduling and well placement design[ J]. SPE 49055,1998.
  • 3Beckner B L, Song X. Field development planning using simulated annealing optimal economic well scheduling and placement [ J ].SPE 30650,1995.
  • 4徐华.油气藏智能化计算机布井的理论、方法及应用研究[D].南充:西南石油学院,1987.
  • 5Holland J H. Adaptation in natural and artificial systems[ M]. Michigan :The University of Michigan Press, 1975.

同被引文献21

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部