期刊文献+

没有PS条件的山路引理(英文)

Mountain Pass Lemma Without the P S Condition
下载PDF
导出
摘要 本文研究了没有Palais-Sm ale条件的山路引理.对于不满足Palais-Sm ale条件的泛函,得到了渐近临界点的存在性,推广了古典的山路引理.本文还提供了更弱条件下的山路引理的新的证明. In this paper, the well-known Mountain Pass Lemma is considered without the Palais -Smale (P. S. ) Condition. It is obtained that the existence of asymptotical-critical points of a functional which does not satify the P. S, condition. The main result generalizes the classical Mountain Pass Lemma. This paper also provides a new proof method for classical Mountain Pass Lemma under weaker conditions.
作者 孙金丽
出处 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2006年第1期14-16,共3页 Journal of Nanjing Normal University(Natural Science Edition)
基金 Supported by Tianyuan Fund for Mathematics of National Natural Science Foundation of China(A0324615)and Science Founda-tion of Nanjing Normal University(2002SXXXGQ2B20).
关键词 PS条件 山路引理 渐近临界点 P S condition, Mountain Pass Lemma, asymptotical-critical points
  • 相关文献

参考文献6

  • 1Ambrosetti A, Rabinowitz P H. Dual variational methods in critical point theory and applications[ J]. J Funct Anal, 1973,14:349-381.
  • 2Choi Y S, McKenna P J, Romano M. A mountain pass method for the numerical solution of semilinear wave equations[ J].Numer Math, 1993, 64 :487-509.
  • 3Jabri T. The Mountain Pass Theorem: Variants, Generalizations and Some Applications [ M ]. Cambridge: Cambridge University Press, 2003.
  • 4Guo D J. Nonlinear Functional Analysis[ M ]. Jinan: Shandong Science and Technology Press, 1985.
  • 5Qi Guijie. Generalization of Mountain Pass Lemma[J]. Chinese Science Bulletin, 1987, 32: 798-801.
  • 6Willem M. Minimax Theorems[M]. Berlin: Birkhauser, 1996.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部