期刊文献+

基于动态矩形的聚类方法的设计与实现

Design and realization of dynamic rectangle-based clustering approach
下载PDF
导出
摘要 提出了一种新的基于动态矩形的聚类方法DRCA。该方法减少了参与聚类计算的数据元素的数量,在每一次基本聚类过程中,采用数据之间空间位置比较取代复杂的聚类距离函数计算,使得算法复杂度与数据量具有近似线性时间关系。试验结果表明了DRCA的正确性和有效性。 A dynamic rectangle-based clustering approach(DRCA) was presented. The number of data that needed to be examined for clustering was reduced, and in each procedure of clustering, the position comparison between numbers was used without any distance comparison, which made DRCA had the nearly linear time complexity with the size of dataset. The experiment results show that the DRCA is correct and efficient.
出处 《计算机应用》 CSCD 北大核心 2006年第4期870-871,共2页 journal of Computer Applications
基金 国家自然科学基金资助项目(60271032)
关键词 数据挖掘 聚类 距离函数 data mining clustering distance function
  • 相关文献

参考文献12

  • 1韩家,KAMBER M.数据挖掘概念与技术[M].北京:机械工业出版社,2001
  • 2MOODY J,DARKEN C.Fast learning in networks of locally-tuned processing units[J].Neural Computation,1989,1(2):281-249.
  • 3ESKIN E,ARNOLD A,PRERAU M,et al.A geometric framework for unsupervised anomaly detection:Detecting intrusions in unlabeled data[A].In data mining for security applications[C].2002.
  • 4LLOYD SP.Least squares quantization in PCM[J].IEEE Trans on Information Theory,1982,IT-28(2):129-137.
  • 5王熙照,王亚东,湛燕,袁方.学习特征权值对K-均值聚类算法的优化[J].计算机研究与发展,2003,40(6):869-873. 被引量:48
  • 6KRISHNAPURAM R,KELLER JM.A possibilistic approach to clustering[J].IEEE Transactions on Fuzzy Systems,1993,1(2):98-110.
  • 7SELIM SZ,ISMAIL MA.K-means type algorithms:a generalized convergence theorem and characterization of local optimality[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1984,6(1):81-87.
  • 8KHAN SS,AHMAD A.Cluster center initialization algorithm for k-means clustering[J].Elsevier science inc,2004,25(11):1293-1302.
  • 9HUANG Z.Extensions to the K-means algorithm for clustering large data sets with categorical values[J].Data Mining knowledge discovery,1998,2(3):283-304
  • 10闫德勤,迟忠先.一种新的聚类算法[J].小型微型计算机系统,2004,25(11):1984-1985. 被引量:1

二级参考文献13

  • 1GUHA S, RASTOGI R, SHIM K. ROCK: A robust clustering algorithm for categorical attributes[ A]. In proceedings of the 15th ICDE[C], 1999.512-521.
  • 2GANTI V, GEHRKE J, RAMAKRISHNAN R. Cactus- clustering categorical data using summaries[ A]. In Proc 1999 Int Conf Knowledge Discovery and Data Mining[ C], 1999.73 -83.
  • 3GUHA S , MEYERSON A , MISHRA N , et al . Clustering data streams: Theory and practice[ J]. Knowledge and Data Engineering,IEEE Transactions on, 2003, 15(3): 515 -528.
  • 4PORTNOY L, ESKIN L, STOLFO S. Intrusion Detection with Unla-beled Data using Clustering[ A]. In Proceedings of ACM CSS Workshop on Data Mining Applied to Security (DMSA-2001) [ C], Philadelphia, PA, 2001.
  • 5ESKIN E, ARNOLD A, PRERAU M, et al. A geometric framework for unsupervised anomaly detection: Detecting intrusions in unla-beled data[ Z]. In Data Mining for Security Applications, 2002.
  • 6SHENG YJ , YU MX . An Efficient Clustering Algorithm [ A ] . In Proc of 2004 International Conference on Machine Learning and Cybernetics[ C], 2004.8.
  • 7MERZ C J, MERPHY P. UCI repository of machine learning databases[ EB/OL]. http://www. ics. uci. edu/ relearn/ MLRRepository. html, 2000.
  • 8Dunn J C. A fuzzy relative of ISODATA process and its use in detecting compact,wellweparated clusters[J]. J. Cybernet, 1973, 3(3): 32-57.
  • 9Bezdek J C, et al. Convergence theory for fuzzy C-means: counterexamples and repairs[J]. IEEE Trans. SMC, 1987, 17(5): 873-877.
  • 10Chaudhuri D, Chaudhuri B. A novel multiseed nonhierarchical data clustering technique[J]. IEEE Tran. SMC-Part B, 1997, 27(5): 871-877.

共引文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部