期刊文献+

固溶强化FeCrNi合金塑性变形机制探讨 被引量:2

Plastic Deformation Mechanism of Solid Solution Hardened FeCrNi Alloy
下载PDF
导出
摘要 采用万能材料试验机和分离式霍普金森压杆对氮固溶强化的FeCrNi合金进行了不同温度下的准静态和动态力学试验,研究了温度和应变速率对FeCrNi合金力学性能的影响。结果表明:由于氮固溶强化原子的本征势垒△G_0较低,使FeCrNi合金在准静态下热激活应力为零时的临界温度T_c小于非热应力的失稳温度T_c,这时流变应力-温度曲线出现平台区;而在高应变速率时,T_c大于T_c,使平台区消失;在室温至600K之间存在的退火孪晶对非热应力和热激活应力均产生影响,随着温度的升高,退火孪晶逐渐消失,使得非热应力和热激活应力明显下降。 Using versatile material test machine and split Hopkinson pressure bar (SHPB), quasi-static and dynamic mechanical tests of FeCrNi alloy were carried out, the effect of temperature and strain rate on mechanical properties was investigated. The small AGo of solid solution hardening nitrogen atom made the therrnally activated critical temperature T~ lower than the critical descend temperature Te of athermal stress, which resulted in a platform in the quasi-static flow-stress-temperature curve at 573--900 K. But high strain rate made Tc higher than Te′, the platform disappeared. A large mount of annealing twins affected both athermally and thermally activated stresses. The twins disappear as temperature was elevated from room temperature to about 600 K, which made the two kinds of stress all descend dramatically in this temperature region.
出处 《机械工程材料》 CAS CSCD 北大核心 2006年第3期14-16,30,共4页 Materials For Mechanical Engineering
基金 国家自然科学基金(10232040)
关键词 FeCrNi合金 固溶强化 塑性变形机制 FeCrNi alloy solid solution hardening plastic deformation mechanism
  • 相关文献

参考文献4

  • 1卡恩W,哈森P,克雷默E J.材料的塑性变形与断裂[M].北京:科学出版社,1998.
  • 2冯端 师昌绪 刘治国.材料科学导论[M].北京:化学工业出版社,2002.5.
  • 3Kooks U F,Argon A S,Arshby M F.Thermodynamics and kinetics of slip[M].New York:Pergamon Press Ltd,1975.
  • 4Nemat-Nasser S,Guo W,Kihl D.Thermomechanical response of AL-6XN stainless steel over a wide range of strain rates and temperature[J].J Mech Physics Solids,2001,49:1823-1846.

共引文献65

同被引文献22

  • 1潘晓霞,余勇,陈裕泽,陶俊林,谢若泽.温度和应变速率对FeCrNi合金位错组态的影响[J].钢铁研究学报,2007,19(6):65-68. 被引量:2
  • 2石志勇,汤文辉.Al_2O_3陶瓷的损伤型本构关系研究[J].强度与环境,2007,34(3):53-57. 被引量:7
  • 3Johnson GR, Cook WH. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics, 1985, 21(1): 31-43
  • 4Kocks UF, Argon AS, Ashby Mf. Thremodynamics and Kinetics of Slip. 1st ed England: Pergamon, 1975
  • 5Zerilll F J, Armstrong RW. Dislocation:mechanics-based constitutive relations for material dynamics calculation. J Appl Phys, 1987, 61(5): 1816-1825
  • 6Abed FH, Voyiadjis GZ, Rouge B. A consistent modified zerilli-armstrong flow stress model for BCC and FCC Metals for elevated temperatures, Acta Mechanica, 2005, 175(1-4): 1-18
  • 7Gottstein G, Argoll AS, Dislocation theory of steady state deformation and its approach in creep and dynamic tests. Acta Metall, 1987, 35(6): 1261-1271
  • 8Nemat-Nasser S, Guo WG. Thermomechanical response of HSLA-65 steel plates: experiments and modeling. Mechanics of Materials, 2005, 37(2-3): 379-405
  • 9Nemat-Nasser S, Guo WTG, Kihl D. Thermomechanical response of AL-6XN stainless steel over a wide range of strain rates and temperature. J Mech Physics Solids, 2001, 49(8): 1823-1846
  • 10Nemat-Nasser S, Guo WG. Thermomechanical response of DH-36 structureral steel over a wide range of strain rates and temperatures. Mechanics of Materials, 2003, 35(11): 1023-1047

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部