期刊文献+

ANFIS建模的人工免疫聚类算法应用研究 被引量:4

App lication research on artificia l imm une clustering a lgorithm of ANF IS m odeling
下载PDF
导出
摘要 结合锌钡白干燥煅烧生产过程的建模问题,针对ANFIS存在的网络易陷入局部极小点缺陷,提出了一种基于人工免疫聚类的ANFIS建模算法.该算法通过免疫网络对其抗体及记忆数据集逐代克隆、变异及抑制操作,提取有用的模糊规则数目,避免ANFIS训练陷入局部极小点的可能性.从理论机理及仿真研究上分析免疫聚类对ANFIS网络建模性能的作用,取得了良好的辨识效果. ANFIS is easy to fall into local minima. To solve these problems, this paper proposes a new kind of artificial immune clustering algorithm for modeling of ANFIS. In this algorithm, the immune network does cloning, mutation and suppression actions to antibodies and memory data sets, extracts useful fuzzy rules from them and avoids training possibilities of ANFIS to local minimal ports. The paper applies this modeling algorithm into some Lithopone calcination process and analyzes its performance. Good modeling results are obtained.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2006年第3期495-498,共4页 Journal of Harbin Institute of Technology
基金 广东省科技厅攻关项目(C10909)
关键词 人工免疫 ANFIS 聚类 建模 artificial immune ANFIS clustering modeling
  • 相关文献

参考文献11

  • 1JANG J S R,SUN C T.Neuro-fuzzy modeling and control[J].Proceedings of the IEEE,1995,83 (3):378-406.
  • 2JANG J S R.ANFIS:Adaptive network-based fuzzy inference systems[J].IEEE Transactions on Systems,Manal and Cybernetics,1993,23(5):605-684.
  • 3邓志东,孙增圻,张再兴.一种模糊CMAC神经网络[J].自动化学报,1995,21(3):288-294. 被引量:50
  • 4AZEEM M F,HANMANDLU M,AHMAD N.Generalization of adaptive neuro-fuzzy inference systems[J].IEEE Transactions on Neural Network,2000,11 (6):1332-1346.
  • 5欧阳楷,陈卉,周萍,周琛.神经计算中坐标变换的网络模型(CMAC)的泛化特性[J].自动化学报,1997,23(4):475-481. 被引量:16
  • 6HUNT J E,COOKE D E.An Adaptive,distributed learning system based on the immune system[J].Proceedings 1995 IEEE International Conference on System,Manal and Cybernetics,1995,3(10):22 -25.
  • 7TIMMIS J,NEAL M,HUNT J.An artificial immune system for data analysis[J].BioSystems,2000,55:143-150.
  • 8TIMMIS J.Artificial Immune Systems:A Novel Data Analysis Technique Inspired By the Immune Network Theory[D].Aberystwyth,Ceredigion:Department of Computer Science,University of Wales,2000.
  • 9童树鸿,沈毅,刘志言.基于聚类分析的模糊分类系统构造方法[J].控制与决策,2001,16(B11):737-740. 被引量:21
  • 10李少远,王群仙,陈增强,袁著祉.Sugeno模糊模型的辨识[J].南开大学学报(自然科学版),1999,32(1):58-63. 被引量:6

二级参考文献16

共引文献95

同被引文献44

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部