期刊文献+

差分方程的正周期解(英文)

Positive periodic solutions for difference equations
下载PDF
导出
摘要 讨论了一类时滞差分方程正周期解的存在性,利用不动点定理,得到了正周期解存在的充分条件. In this paper,the existence of positive periodic solutions for a class of delay difference equations is investigated, By using fixed point theorem, several sufficient conditions are obtained under which the existence of positive periodic solutions is guaranteed.
作者 王卫兵
出处 《内蒙古师范大学学报(自然科学汉文版)》 CAS 2006年第1期47-49,53,共4页 Journal of Inner Mongolia Normal University(Natural Science Edition)
基金 Project Supported by the Natural Science Foundation of China(10071018)
关键词 周期解 差分方程 不动点定理 periodic solutions difference equation fixed point theory
  • 相关文献

参考文献2

二级参考文献11

  • 1Godoy, S.M.S. and dos Reis, J.G., Stability and existence of periodic solutions ofa functional differential equation, J.Math. Anal.Appl.,1996,198:381-398.
  • 2Ruan Shigui and Wei Junjie,Periodic solutions of planar systems with two delays,Proc. Roy. Soc. Edinburgh Sect. A, 1999,129:1017-1032.
  • 3Jones,G., The existence of periodic solution of f′(x)=-αf(x-1)[1+f(x)],J.Math.Anal.Appl.,1962,5:435-450.
  • 4Nussbaum,R.D.,Periodic solutions of some nonlinear autonomous functionaldifferential equations, Ann.Math. Pura Appl., 1974,101:263-308.
  • 5Chow,S.N. and Hale,J.K.,Periodic solutions of autonomous equations, J.Math.Anal.Appl., 1978,66:495-506.
  • 6Hale,J.K.and Lunel,S.M.V., Introduction to Functional Differential Equations,Springer,NewYork,1993.
  • 7Chow,S.N. and Mallet-Paret, J., The fuller index and global Hopf bifurcation,J.Differential Equations, 1978,29:66-85.
  • 8Erbe, L.H., Krawcewicz,W., Geba, K., et al., S′-degree and global Hopfbifurcation theory of functional-differential equations, J.Differential Equations1992,98:277-298.
  • 9Gaines, D.R.E. and Mawhin,J.L., Coincidence Degree and Non-linear DifferentialEquations, Springer-Verlag, Berlin,1977.
  • 10Taboas, P., Periodic solutions of aplanar delay equation, Proc. Roy. Soc. Edinburgh Sect. A, 1990,116:85-101.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部