期刊文献+

CH_4/O_2/N_2层流火焰瞬态响应特性数值分析

A Numerical Analysis of Instantaneous Response of the CH_4/O_2/N_2 Laminar Flamelet
下载PDF
导出
摘要 用数值分析方法研究CH4/O2/N2层流扩散火焰的瞬态响应特性.采用详细的GRI_Mech 3.0机理(包含53种组分,325个基元反应)描述CH4氧化和NOx生成.首先比较火焰面稳态结构的计算结果和实验数据,以验证数值方法的可靠性.用台阶跃变的火焰拉伸率来模拟瞬态流场对火焰面局部结构的影响,给出了火焰面结构(温度、组分浓度)的瞬态响应曲线,分析了火焰面的响应特性.着重探讨了不同拉伸率跃变幅度对响应特性的影响,发现火焰面的响应对于拉伸率正向跃变和负向跃变并不对称,而是相反,且在小的拉伸率跃变范围内火焰面响应时间和拉伸率跃变幅度近似成反比关系.另外,温度的平均响应时间远大于一个典型湍流燃烧场的流动时间尺度,说明火焰面非稳态效应对于湍流燃烧数值模拟有重要意义. The instantaneous response of a laminar diffusion flamelet is investigated numerically. A detailed mechanism GRI-Meeh 3.0(53- species and 325-reaction) is empolyed to describe the CH4 oxidation and NOx formation. A predication of steady flamelct structures is compared with the experimental data to validate the method. A step variation of strain rate is used to simulate the influence of a instantaneous flow field on the flamelet local structure. The response of flamelet structures( temperature and species concentration) to the strain rate variation is given and analyzed. We focus on the influence of the step size of the strain rate. It is found that the flamelet response to the strain rate variation is not symmetric,and the response time is inverse proportional to the strain rate variation as it is small. In addition, the mean response time of temperature is much longer than the flow time scale of a typical turbulent combustion field, which demonstrates the importance of unsteadiness in the numerical simulation of turbulent combustions.
出处 《计算物理》 CSCD 北大核心 2006年第2期193-198,共6页 Chinese Journal of Computational Physics
基金 国家重点基础研究专项经费项目(No.G1999022207) 国家自然科学基金(No.50206021)资助项目
关键词 层流扩散火焰面 详细化学反应机理 拉伸率 瞬态响应 氮氧化物 laminar diffusion flamelet detailed chemical reaction mechanism strain rate instantaneous response nitric oxides
  • 相关文献

参考文献12

  • 1Egolfopoulos F N,Campbell C S.Unsteady counterflowing strained diffusion flames:diffusion-limited frequency response [J].Journal of Fluid Mechanics,1996,318:1-29.
  • 2Darabiha N.Transient behaviour of laminar counterflow hydrogen-air diffusion flames with complex chemistry [J].Combustion Science and Technolgoy,1992,86:163-181.
  • 3王海峰,陈义良,董刚,朱旻明.拉伸层流扩散火焰面结构及熄火的研究[J].工程热物理学报,2003,24(4):695-698. 被引量:9
  • 4Peters N.Laminar diffusion flamelet models in non-premixed turbulent combustion [J].Progres in Energy and Combust Science,1984,10:319-339.
  • 5Pitsch H,Chen M,Peters N.Unsteady flamelet modeling of turbulent hydrogen-air diffusion flames [ A ].The Combustion Institute,Twenty-Seventh Symposium(International) on Combustion [C].Pittsburgh,1998,1057-1064.
  • 6Cuenot B,Egolfopoulos F N,Poinsot T.An unsteady laminar flamelet model for non-premixed combustion [J].Combustion Theory and Modelling,2000,4:77-97.
  • 7Im H G,Chen J H,Chen J Y.Chemical response of methane/air diffusion flames to unsteady strain rate [J].Combustion and Flame,1999,118:204-212.
  • 8Gregory P S,David M G,Michael F,et al.GRI-Mech:An optimized detailed chemical reaction mechanism for methane combustion and NO formation and reburning[ EB/OL].http://www.me.berkeley.edu/gri_ mech/GRI-Mech.
  • 9Radhakrishnan K,Hindmarsh A C.Description and use of LSODE,the Livermore solver for ordinary differential equations [ R ].Livermore National Laboratory Report,UCRL-1D-113855,1993.
  • 10Kee R J,Rupley F M,Miller J A.CHEMKIN-Ⅱ:A fortran chemical kinetics package for the analysis of gas-phase chemical kinetic [R].Sandia Report,SAND89-8009,1989.

二级参考文献10

  • 1Williams F A. Progress in Knowledge of Flamelet Structure and Extinction. Prog. Energy Combust. Sci., 2000,26:657-682.
  • 2Peters N. Laminar Diffusion Flamelet Models in Non- premixed Turbulent Combustion. Prog. Energy Combust.Sci., 1984, 10:319-339.
  • 3Pitsch H, Peters N. A Consistent Flamelet Formulation for Non-premixed Combustion Considering Differential Diffusion Effects. Combust. & Flame, 1998, 114: 26-40.
  • 4Barths H, Peters N, Brehm N, et al. Simulation of Pollutant Formation in a Gas-turbine Combustor Using Unsteady Flamelets. In: Proc. of the Twenty-Seventh Symposium (International) on Combustion. The Combustion Institute, 1998. 1841-1847.
  • 5Barlow B. S, Karpetis A N, Frank J H. Scalar Profiles and NO Formation in Laminar Opposed-flow Partially Premixed Methane/Air Flames. Combust. & Flame, 2001,127:2102-2118.
  • 6Radhakrishnan K, Hindmarsh A C. Description and Use of LSODE, the Livermore Solver for Ordinary Differential Equations. Livermore National Laboratory Report,UCRL- 1D-113855, 1993.
  • 7Kee R J, Rupley F M, Miller J A. CHEMKIN-II: A Fortran Chemical Kinetics Package for the Analysis of Gasphase Chemical Kinetic. Sandia Report, SAND89-8009,1989.
  • 8Sung C J, Liu J B, Law C K. Structural Response of Counterflow Diffusion Flames to Strain Rate Variations.Combnst. & Flame, 1995, 102:481-492.
  • 9董刚,刘宏伟,陈义良.通用甲烷层流预混火焰半详细化学动力学机理[J].燃烧科学与技术,2002,8(1):44-48. 被引量:48
  • 10王海峰,陈义良,蔡晓丹,李艺.湍流射流扩散火焰的层流火焰面模拟[J].推进技术,2003,24(1):58-62. 被引量:15

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部