摘要
在现今高中数学竞赛以及高考中,构造性方法(注:以下简称为构造法)有着广泛的应用.构造法的实质就是依据某些数学问题的条件或结论所具有的典型特征,用已知条件中的元素为“元件”,用已知的数学关系为“支架”,在思维中构造出一种相关的数学对象、一种新的数学形式;或者利用具体问题的特殊性,为待解决的问题设计一个合理的框架,从而使问题转化并得到解决的方法.正由于构造法的这些特点与所要求的解题转化过程很好的吻合,构造法也就成为解题的主要方法之一,成为常用的解决问题的思想方法,并且在中学数学中有着广泛的应用.下文试通过例题分析,从思维的整体性角度来探讨构造法解题的生成途径.