期刊文献+

极大似然估计和拟极大似然估计模拟之比较 被引量:1

The Comparison between the Random Simulation of the Maximum Likelihood Estimators and the Quasi-maximum Liklihood Estimators
下载PDF
导出
摘要 通过对单个协变量的带有测量误差的一维结构回归模型中总体平均处理效应的极大似然估计和拟极大似然估计的随机模拟结果进行比较,发现这两个公式都不受测量误差的影响,并且可以互换使用.当其它误差较小时用两个公式计算结果虽然相差不大,但相比较而言用拟极大似然估计较好,反之,当其它误差较大时用极大似然估计较好. In this paper, the comparison is qiven between the random simulation of the maximum likelihood estimators and the quasi-maximum likelihood estimators of the population-averaged treatment effects in the one-dimensional structural regression models with one covariate and the measurement errors. It is found that one of the formulae can be replaced by the other, and they are not influenced by the measurement errors. When the other errors( that is, they are different from the measurement errors)are little, the results are similar when using the two formulae,but the use of the quasi-maximum likelihood estimators is better than the use of the maximum likelihood estimators. On the contrary, when the other errors are large, the use of the maximum likelihood estimators is better than that of the quasi-maximum likelihood estimators.
作者 何春 方积乾
出处 《广东工业大学学报》 CAS 2006年第1期114-116,共3页 Journal of Guangdong University of Technology
基金 国家自然科学基金重点课题资助项目(39930160)
关键词 总体平均处理效应 极大似然估计 拟极大似然估计 随机抽样 测量误差 随机模拟 比较 population-averaged treatment effects maximum likdlihood estimators quasi-maximum likeli hood estimators random sampling measurement error random simulation comparison
  • 相关文献

参考文献3

  • 1Fuller W A.Measurement Error Models[M].New York:Wiley,1987.
  • 2Greenland S,Robins J M,Pearl J.Confounding and Collapsibility in Causal Inference[J].Statistical Science,1999,14(1):29-46.
  • 3何春.可交换条件下多维结构模型中总体平均处理效应的估计[D].广州:中山大学公共卫生学院,2004.

同被引文献5

  • 1Berkes l,Horvath L,Kokoszka P. GARCH processes., structure and estimation [J]. Bernoulli, 2003, 9(2):201-227.
  • 2Berkes I, Horvath L. The efficiency of the estimators of the pa- rameters in GARCH processes [J]. Ann. Star. , 2004, 32:633- 655.
  • 3Lee M. M- estimator and maximum likelihood estimator (MLE) E MT. Micro- Econometrics, Springer New York, 2008: 91-132.
  • 4Mukherjee K. M- estimation in GARCH model [J]. Econ. Theory, 2008, 24:1530-1553.
  • 5Peng L, Yao Q. Least absolute deviations estimation for ARCH and GARCH models [J]. Biometrika, 2003, 90:967-975.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部