摘要
设F是域,n为正整数,GLn(F)表示域F上的n级一般线性群,T12(1)表示(1,2)位置元与所有对角元都是1而其余元为零的GLn(F)中元;GLn(F)中与T12(1)相似的矩阵称为F上的n级平延.A,B为两个平延,当A与B可交换时,P∈GLn(F),使P-1AP=T12(1),P-1BP可表为4种简单形式.
Let F be a field, and n be a positive integer, GLn(F)denotes the General Linear Group of degree n over F. A matrix Ain GLn (F)is called a transvection if A is similar to T12 (1) whose elements on (1,2)-position and principal diagonal are all 1 and 0 else.Let A and B be two transvections,a P∈GLn (F) exists, P^-1A=T12(1), P^-1B can be denoted with four simple forms if A and B are commutative.
出处
《广东工业大学学报》
CAS
2006年第1期127-133,共7页
Journal of Guangdong University of Technology
关键词
平延
中心化子
相似
标准形
transvection
centralizer
similitude
normalized form