期刊文献+

有限个广义渐近拟非扩张型映象公共不动点的逼近 被引量:3

Approximation of Common Fixed Points of a Finite Family of Generalized Asymptotically Quasi-nonexpansive Type Mappings
下载PDF
导出
摘要 引入具混合误差的N步迭代序列,并在一般的Banach空间上给出了具混合误差的N步迭代序列强收敛于有限个具有公共不动点的广义渐近拟非扩张型映象的一个公共不动点的充分必要条件。本文的结果推广了大量现有成果。 This paper introduces N-step iterative sequence with mixed errors and gives a necessary and sufficient condition for the N-step iterative sequence with mixed errors to converges strongly to a common fixed point of a finite family of generalized asymptotically quasi-nonexpansive type mappings in a general Banach space. The result presented in this paper extends a great deal of the achievement now existed.
作者 向长合
出处 《重庆师范大学学报(自然科学版)》 CAS 2006年第1期6-9,共4页 Journal of Chongqing Normal University:Natural Science
基金 国家自然科学基金项目(No.10471159)
关键词 BANACH空间 渐近非扩张映象 渐近拟非扩张型映象 迭代序列 公共不动点 混合误差 Banach space asymptotically nonexpansive mappings asymptotically quasi-nonexpansive type mappings iterativesequence common fixed point mixed error
  • 相关文献

参考文献8

  • 1向长合.Banach空间上广义渐近拟非扩张型映象不动点的逼近[J].重庆师范大学学报(自然科学版),2005,22(4):6-9. 被引量:8
  • 2ZHOU H Y,CHOY J,CHANG S S.Approximating the Fixed Points of ψ-hemicontractions by the Ishikawa Iterative Process with Mixed Errors in Normed Linear Spaces [J].Nonlinear Anal TMA,2001,47:4819-4826.
  • 3CHANG S S,LEE H W J,CHOY J.On the Convergence of Finite Steps Iterative Sequences for Asymptotically Nonexpansive Mappings [ J ].Dynamics of Continuous,Discrete and Impulsive Systems.2004,11 (A):589-600.
  • 4GOEBEL K,KIRK W A.A Fixed Point Theorem for Asymptotically Nonexpansive Mappings [J].Proc Amer Math Soc,1972,35:171-174.
  • 5KIRK W A.Fixed Point Theorems Non-Lipschitzian Mappings of Asymptotically Nonexpansive Type [ J].Israel J Math,1974,17:339-346.
  • 6LIU Q H.Iterative Sequences for Asymptotically Quasi-nonexpansive Mappings with Error Member of Uniformly Convex Banach Spaces [ J].J Math Anal Appl,2002,266:468-471.
  • 7CHANG S S,KIM J K,KANG S M.Approximating Fixed Points of Asymptotically Quasi-nonexpansive Type Mappings by the Ishikawa Iterative Sequences with Mixed Errors[ J].Dynamic Systems and Applications,2004,13:179-186.
  • 8ZHOU Y Y,CHANG S S.Convergence of Implicit Iterative Process for a Finite Family of Asymptotically Nonexpansive Mappings in Banach Spaces [ J].Numer Funct Anal and Optimiz,2002,23:911-921.

二级参考文献7

  • 1GOEBEL K, KIRK W A. A Fixed Point Theorem for Asymptotically Nonexpansive Mappings [J]. Proc Amer Math Soc, 1972,35: 171-174.
  • 2KIRK W A. Fixed Point Theorems Non-Lipschitzian Mappings of Asymptotically Nonexpansive Type [J]. Israel J Math, 1974,17: 339-346.
  • 3LIU Q H. Iterative Sequences for Asymptotically Quasi-Nonexpansive Mappings with Error Member [ J ]. J Math Anal Appl,2001, 259: 18-24.
  • 4LIU Q H. Iterative Sequences for Asymptotically Quasi-Nonexpansive Mappings with Error Member of Uniformly Convex Banach Spaces [J]. J Math Anal Appl, 2002, 266:468-471.
  • 5CHANG S S, KIM J K, KANG S M. Approximating Fixed Points of Asymptotically Quasi-Nonexpansive Type Mappings by the Ishikawa Iterative Sequences with Mixed Errors[ J ]. Dynamic Systems and Applications, 2004, 13:179-186.
  • 6ZHOU H Y, CHO Y J, CHANG S S. Approximating the Fixed Points of φ-hemicontractions by the Ishikawa Iterative Process with Mixed Errors in Normed Linear Spaces [J]. Nonlinear Anal TMA, 2001,47: 4819-4826.
  • 7ZHOU Y Y, CHANG S S. Convergence of Implicit Iterative Process for a Finite Family of Asymptotically Nonexpansive Mappings in Banach Spaces [J]. Numer Funct Anal and Optimiz, 2002, 23: 911-921.

共引文献7

同被引文献19

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部