期刊文献+

合金凝固传热传质宏微观耦合数值研究及验证

Numerical study and validation for coupling of micro-macro heat and mass transfer during alloys solidification
下载PDF
导出
摘要 建立了描述二元合金凝固的平面枝晶一维微观偏析数学模型,考虑溶质在固相中有限扩散,在液相中完全扩散。通过数值模拟,分析比较了A l-Cu和F e-C合金的微观偏析特性。同时,进一步将微观数值模型与宏观凝固实验的传热传质数学模型相耦合,实现了凝固宏微观复合尺度的全数值模拟。研究表明,数值计算结果与实验数据吻合良好,证明微观模型能较准确地反映微观质量传输并能可靠地与宏观相变传热传质模型相耦合。此外,从微观到宏观的计算结果都说明F e-C合金的凝固过程几乎接近平衡凝固。 One-dimensional plate-like dendritic model was built to describe the microsegregation during binary alloy solidification with finite solid back-diffusion and complete diffusion in the liquid. The specialties of microsegregation for Al-Cu and Fe-C alloys were analyzed and compared by simulation. Moreover, the microsegregation model was further developed to couple with the macro numerical heat and mass transfer model which simulates the macro solidification experiment and the full numerical simulation of micro-macro multiple scale coupling for solidification is realized. The numerical results are proven to be in good agreement with experimental data. It shows that the microsegregation numerical model can reflect the micro mass transfer accurately and can be coupled reliably with macro heat and mass transfer model for solidification, in addition, both the micro and macro investigation show that the solidification of Fe-C alloy progresses almost in equilibrium.
出处 《热科学与技术》 CAS CSCD 2006年第1期44-49,共6页 Journal of Thermal Science and Technology
基金 国家自然科学基金支助项目(50406024)
关键词 合金凝固 传热传质 宏微观全数值模拟 微观偏析 枝晶 alloy solidification heat and mass microsegregation dendritic crystal tranfer micro-macro full numerical simulation
  • 相关文献

参考文献2

二级参考文献18

  • 1[1]Kraft T, Chang Y A. Predicting microstructure and micro-segregation in multi-component alloy[J]. JOM, 1997, 49(12): 20-28.
  • 2[2]Nastac L. Analytical modeling of solute redistribution during the initial unsteady unidirectional solidification of binary dilute alloys[J]. Journal of Crystal Growth, 1998, 193: 271-284.
  • 3[3]Voller V R. A semi-analytical model of micro segregation in a binary alloy[J]. Journal of Crystal Growth, 1999, 197: 325-332.
  • 4[4]Clyne T W, Kurz W. Solute redistribution during solidification with rapid solid state diffusion[J]. Metallurgical Transactions A, 1981, 12A: 965-971.
  • 5[5]Clyne T W, Wolf M, Kurz W. The effect of melt composition on solidification cracking of steel, with particular reference to continuous casting[J]. Metallurgical and Materials Transactions B, 1982, 13B: 259-265.
  • 6[6]JIE W. The shift of the growth interface during the Bridgman process due to the solute redistribution[J]. Journal of Crystal Growth, 2000, 219: 379-384.
  • 7[7]JIE W, LI Y J, LIU X H. Solute redistribution during the accelerated crucible rotation Bridgman growth of Hg1-xMnxTe[J]. Journal of Crystal Growth, 1999, 205: 510-514.
  • 8[8]JIE W, MA D. Solute redistribution and growth velocity response in directional solidification process[J]. Journal of Crystal Growth, 1996, 169: 170-174.
  • 9[9]Combeau H, Drezet J M, Mo A, et al. Modeling of micro-segregation in macro-segregation computation[J]. Metallurgical and Materials Transactions A, 1996, 27A: 2314-2327.
  • 10[10]Voller V R. A numerical scheme for solidification of an alloy[J]. Canadian Metallurgical Quarterly, 1998, 37(3-4): 169-177.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部