期刊文献+

Nonlinear Shift of the Raman A1 Mode in Ga-Incorporated CuInSe2 Thin Films

Nonlinear Shift of the Raman A1 Mode in Ga-Incorporated CuInSe2 Thin Films
下载PDF
导出
摘要 Composition dependence of quaternary CuIn1-x GaxSe2 films on Ga content has been systematically investigated by Raman scattering. The dominant A1 mode shifts from 174cm^-1 for CuInSe2 to 185cm^-1 for CuGaSe2 in an approximately polynomial curve other than a linear curve, indicating existence of asymmetric distribution of Ga and In on a microscopic scale in films. With Ga content x 〉 0.3, the significantly broadening and intensity decrease of A1 modes suggest the degradation of crystalline quality of chalcopyrite phase. Additionally, the quenching of additional Raman band at 183cm^-1 for the Ga-rich films reveals that CuAu-ordered phase can coexist in nominal chalcopyrite CuInSe2 films but not in CuGaSe2, due to Ga inhibition effect. Composition dependence of quaternary CuIn1-x GaxSe2 films on Ga content has been systematically investigated by Raman scattering. The dominant A1 mode shifts from 174cm^-1 for CuInSe2 to 185cm^-1 for CuGaSe2 in an approximately polynomial curve other than a linear curve, indicating existence of asymmetric distribution of Ga and In on a microscopic scale in films. With Ga content x 〉 0.3, the significantly broadening and intensity decrease of A1 modes suggest the degradation of crystalline quality of chalcopyrite phase. Additionally, the quenching of additional Raman band at 183cm^-1 for the Ga-rich films reveals that CuAu-ordered phase can coexist in nominal chalcopyrite CuInSe2 films but not in CuGaSe2, due to Ga inhibition effect.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2006年第4期1002-1004,共3页 中国物理快报(英文版)
基金 Supported by China Postdoctoral Science Foundation under Grant No 2005037539, and the National High Technology Programme of China under Grant No 2004AA513020.
关键词 CHALCOPYRITE SEMICONDUCTOR CUGAXIN1-XSE2 CUGASE2 SPECTRA CHALCOPYRITE SEMICONDUCTOR CUGAXIN1-XSE2 CUGASE2 SPECTRA
  • 相关文献

参考文献20

  • 1Wei S H, Zhang S B and Zunger A 1998 Appl. Phys, Lett.72 3199.
  • 2Persson C and Zunger A 2005 Appl. Phys. Lett. 87 211904.
  • 3Zhang S B, Wei S H, Zunger A and Katayama-Yoshita H 1998 Phys. Rev. B 57 9642.
  • 4Huang S Y, Zhang L D, Li G H, Dai Z H, Zhu X G, Qu F Q, Fu S Q, Zhong Y R and Miao Y 2002 Chin. Phys. Lett.19 1199.
  • 5Rincon C, Wasim S M, Mar'in G, Delgado J M, Huntzinger J R, Zwick A and Gabibert J 1998 Appl. Phys. Lett. 73 441.
  • 6Stanbery B J, Kincal S, Kim S, Chang C H, Ahrenkiel S P, Lippold G, Neuman H, Anderson T J and Crisalle O D 2002 J. Appl. Phys. 91 3598.
  • 7Xu C M, Xu X L, Xu J, Yang X J, Zuo J, Kong N, Huang W H and Liu H T 2004 Semicond. Sci. Technol, 19 1201.
  • 8Alvarez-Garc'ia J, Barcones B, Perez-Rodrg'iuez A,Romano-Rodrg'iuez A, Morante J R, Janotti A, Wei S H and Scheer R 2005 Phys. Rev. B 71 054303.
  • 9Lazewski J, Neumann H, Parlinski K, Lippold G and Stanbery B J 2003 Phys. Rev. B 68 144108.
  • 10Bodnar I V, Smirnova G F, Smirnova T V, Aleshchenko A and Vodopyanov L K 1988 Phys. Statue Solidi B 145 117.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部