期刊文献+

基于神经网络的联合智能滤波在导航系统中的应用 被引量:1

Intelligent Filter Based on Neural Networks for Integrated Navigation System
下载PDF
导出
摘要 针对INS/GPS/CNS组合导航系统的特点,运用神经网络理论代替传统卡尔曼滤波器,利用INS/GPS、INS/CNS两个局部滤波器的输出值,通过综合滤波器进行线性最优估计,且进行了计算机仿真。仿真结果表明,该系统具有较高的导航精度,改善了系统的稳定性和容错性,而且与以往滤波器比较,系统的实时性、鲁棒性也有所改善。 According to the characteristic of INS/GPS/CNS Integrated Navigation System, the paper constructed the filter with neural networks theory, and did linear optimal estimation with two local filter's outputs. Simulation results show that the system can obtain higher accuracy, and has better performance of fault tolerant and stability. In addition that the performance of real time and robust are better than that of the former system.
出处 《传感技术学报》 EI CAS CSCD 北大核心 2006年第1期137-141,共5页 Chinese Journal of Sensors and Actuators
关键词 INS/GPS/CNS 组合导航 神经网络 最优估计 INS/GPS/CNS integrated navigation system neural networks optimal estimation
  • 相关文献

参考文献3

二级参考文献3

共引文献29

同被引文献8

  • 1Jimenez L O, Morales-Morell A, Creus A. Classification of Hyper-Dimensional Date Based on Feature and Decision ApProches Using Projection Pursuit, Majority Voting and Neural Network[J]. IEEE Trans on Geosci Remote sening, 1999,37 (3):1360-1365.
  • 2Haykin, S. Neural Network [ M]. 1997, Prentice-Hall, New Jersey.
  • 3Evans J, Inathan G. Jang J. S, Teo R, and Tomlin C, Dragonfly: A Versatile UAV Platform for the Advancement of Aircraft Navigation and Control[C]//Proceedings of the 20th IEEE Digitte Avionics Systems Conference,October 2001.
  • 4Bar-Itzhack IY, and Berman N(1988)Control Theoretic Approach to Interal Navigation System[J]. AIAA J Guidance Con Dyna 11:237-245.
  • 5Da R. Investigation of a Low-Cost and High-Accuracy GPS/ IMU system[C]//Proceedings of ION national technical meeting santa Monica, California, 1998 : 955-963.
  • 6Rashad Sharaf, Aboelmagd Noureldin, Onlines INS/GPS Integration with a Radial Basis Function Neural Network[J]. IEEE A& E System Magazine, March 2005.
  • 7RUMEL HARTDE. Leraning Representa-tion by Back-propagating Errors[J].. Nature,1986,323(9):533-536.
  • 8Brown G. B, Hwang .P.Y. C, Introduction to Random Signals and Applied Kalman Filter-ing[M]. John Wiley & Sons, 1992.

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部