期刊文献+

一种新的粒子滤波算法 被引量:15

A novel particle filter algorithm
下载PDF
导出
摘要 将采样重要再采样(SIR)方法与无迹卡尔曼滤波(UKF)相结合,提出一种新的粒子滤波算法.该算法具有无迹粒子滤波(UPF)粒子使用效率高和SIR粒子滤波运算速度快的优点,同时克服了UPF运算量的增长速率快于状态维数增长的缺陷.仿真结果表明,与UPF相比,本算法在几乎不影响滤波效果的前提下,大幅减少滤波所需计算量. Based on combination of sampling importance resampling (SIR) and unscented Kalman filter (UKF), a novel particle filter is proposed, possessing the merits of high utility efficiency of particles in unscented particle filter (UPF) and of simple operation in SIR, and overcoming the drawback of the rate of increase of computational cost being faster than that of state dimension in UPF. Simulation results show that the proposed algorithm reduces UPF computation notably on the premise of almost not weakening performance.
出处 《武汉大学学报(工学版)》 CAS CSCD 北大核心 2006年第1期118-120,共3页 Engineering Journal of Wuhan University
基金 航天"十五"预研基金项目(编号:413160203)
关键词 粒子滤波 提议概率密度 采样重要再采样 无迹卡尔曼滤波 跟踪 particle filter proposal probability density SIR unscented Kalman filter tracking
  • 相关文献

参考文献9

  • 1Gunnarsson F, Bergman N. Particle filters for positioning, navigation, and tracking[J]. IEEE Transactions on Signal Processing, 2002,50 (2) : 425-437.
  • 2Gordon N J, Salmond D J, Smith A F M. Novel approach to nonlinear/non-Gussian Bayesian state estimation [J]. IEE Proe. Radar Signal Process, 1993,140(2):107- 113.
  • 3Arulampalam S, Maskell S, Gordon N. A tutorial onparticle filters for on line nonlinear/non-Gaussian baysian tracking [J]. IEEE Trans. Signal Processing,2002,50(2) : 174-188.
  • 4Doucet A, Freitas J F G de, Gordon N J. Sequential Monte Carlo methods in practice[M]. New York:Springer-Verlag, 2001.
  • 5Hue C, Cadre J P Le, Perez P. Tracking multiple objects with particle filter [J]. IEEE Transactions on Aerospace and Electronic Systems, 2002,38(3) : 791-812.
  • 6Pitt M, Shephard N. Filtering via simulation: Auxiliary particle filters [J]. J. Amer. Statist. Assoc. ,1999,94(446) :590-599.
  • 7Merwe R V, Doucet A, Freitas J F G de. The unscented particle filter [R]. www. ece. ogi. edu/rvdmerwe-Technical Report CUED/F-INFENF TR 380, 2000.
  • 8Kotecha J H, Djuric P M. Gaussian sum particle filtering [J]. IEEE Transaction on Signal Processing,2003,51 (10) : 2602-2611.
  • 9Kotecha J H, Djuric P M. Gaussian particle filter[J]. IEEE Trans. Signal Processing, 200a, 51 (2) :2592-2601.

同被引文献102

引证文献15

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部