期刊文献+

用遗传算法求解物流运输中多级中转站定位优化问题 被引量:4

A Genetic Algorithms Approach to Optimum Locating of Multiple Stations in Logistics Transportation
下载PDF
导出
摘要 文章建立了物流运输中多级定位优化大规模非线性混合整数规划模型。由于该模型用传统方法直接求解相当困难,文章应用遗传算法对该模型进行了求解。在建模过程中,对模型中的连续实型变量进行离散化处理,从而使整个优化模型变成纯0-1非线性整数规划优化模型;在求解过程中,应用自适应α绝断-指数比例变换适应度法,提高了快速搜寻该模型全局最优值的能力;应用自适应概率指数比例变换法,改进了交叉概率计算方法;应用基于基因权重对基因位置进行动态排序的方法,使优良基因变得集中,从而克服了交叉算子容易破坏长度很长的优良模式的弱点,并依此改进变异概率的计算方法。仿真表明,应用文章提出的遗传算法计算模型,可在微机上稳定地获取该模型的最优解。 This paper establishes the large-scale MIP model of optimum locating of multiple stations in logistics transportation. Because the model is very difficult to solve by the traditional methods,a synthetic solution is presented by genetic algorithms. In establishing the optimization model, the real continuous variables are changed into discrete 0-1 variables so that the nonlinear MIP model is transferred into a pure 0-1 nonlinear IP model. In evolution simulating process, the adaptive αcutoff-pewer law scaling method is applied to improve fitness so that the search ability of global optimum solution increases largely; the adaptive power law sealing method is used to improve crossover possibility; the method of dynamic ranking of gene loci by gene weights is presented to make excellent genes concentrated so that the shortcomings of crossovers to destroy excellent schemata with great encoding lengths are overcome, the method is also used to improve mutation possibility. The empirical results show that the optimum solution of the optimum model can be gained on microcomputers.
出处 《微电子学与计算机》 CSCD 北大核心 2006年第3期47-50,54,共5页 Microelectronics & Computer
基金 陕西自然科学基金项目(2002G06)
关键词 遗传算法 物流运输 多级定位优化 大规模非线性混合整数规划 Genetic algorithms, Logistics transportation, Optimum locating of multiple stations, Large-scale mixed integer programming
  • 相关文献

参考文献7

二级参考文献15

  • 1[1]Goldberg D E.Genetic Algorithms in Search, Optimization, and Machine Learning[M].New York: Addison-Wesley, 1989.
  • 2[2]Mahfoud S W.Genetic drift in sharing methods[A].In Proc.1st IEEE Conf.Evolutionary Computation[C].Piscataway, NJ: IEEE Press, 1994.67-72.
  • 3[3]Kreinovich V, Quintana C, Fuentes O.Genetic algorithms: what fitness scaling is optimal?[J].Cyber and Sys: An Int J, 1993, 24:9-26.
  • 4[4]Darwen P, Yao X.A dilemma for fitness sharing with a scaling function[A].In Proc 2nd.IEEE Conf.Evolutionary Computation[C].Piscataway, NJ: IEEE Press, 1995.166-171.
  • 5[5]Sareni B, Krahenbuhl L.Fitness sharing and niching methods revisited[J].IEEE Trans on Evol Comput, 1998, 2(3): 97-106.
  • 6[6]Michalewicz Z.Genetic Algorithms + Data Structures = Evolution Programs[M].Berlin: Springer-Verlag, 1992.
  • 7[7]Leclerc F, Porvin J Y.A fitness scaling method based on a span measure[A].In Proc.2nd.IEEE Conf.Evolutionary Computation[C].Piscataway, NJ: IEEE Press, 1995.561-565.
  • 8[8]Deb K, Horn J, Goldberg D E.Multimodal deceptive functions[J].Complex Systems, 1993, 7(2): 131-153.
  • 9[9]Goldberg D E, Richardson J.Genetic algorithms with sharing for multimodal function optimization[A].In Proc.2nd.Int.Conf.Genetic Algorithms and Their Applications[C].Hillsdale, NJ: Lawrence Erlbaum, 1987, 41-49.
  • 10[10]Goldberg D E, Deb K, Horn J.Massive multimodality, deception, and genetic algorithms[A].In Proc.2nd.Conf.Parallel Problem Solving from Nature[C].Amsterdam: North-Holland, 1992.15-25.

共引文献3

同被引文献41

引证文献4

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部