期刊文献+

时滞抛物型微分方程解的振动性

Oscillation of solutions of parabolic delay differential equations
下载PDF
导出
摘要 得到具有多个正负系数的时滞抛物型微分方程一切解振动的若干新的充分条件,推广和改进了文献[1](Kreith K,Ladas G.Allowable delays for positive diffusion processes.Hiroshi-ma Math J,1985,15:437-443)中的结果. Some new sufficient conditions for oscillation of all solutions of parabolic delay differential equtions with several positive and negative coefficients are obtained. The results extend and improve the results in the literature [ 1] (Kreith K, Ladas G. Allowable delays for positive diffusion processes. Hiroshima Math J, 1985,15:437-443).
作者 屈英 李翠哲
出处 《延边大学学报(自然科学版)》 CAS 2006年第1期12-16,共5页 Journal of Yanbian University(Natural Science Edition)
关键词 时滞微分方程 抛物型 振动 正负系数 delay differential equations oscillation parabolic type positive and negative coefficients
  • 相关文献

参考文献6

  • 1[1]Kreith K,Ladas G.Allowable delays for positive diffusion processes[J].Hiroshima Math J,1985,15:437-443.
  • 2[2]Kusano T,Yoshida N.Oscillation of parabolic equations with oscillating coefficients[J].Hiroshima Math J,1994,24:123-133.
  • 3[3]Yoshida N.Oscillation of nonlinear parabolic equations with functional arguments[J].Hiroshima Math J,1986,16:305-314.
  • 4[4]Liu Z R,Gerard R,Yu Y H.Oscillation properties of solutions of neutral parabolic differential equations[J].Soochow J Math,1999,25:259-271.
  • 5[5]Gyori I,Ladas G.Oscillation theory of delay differential equations with applications[M].Oxford:Clarendon Press,1991.
  • 6[6]Ladde G S,Lakshmikantham V,Zhang B G.Oscillation theory of differential equations with deviating arguments[M].New York:Marcel Dekker,1987.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部