期刊文献+

淬火无析出区对Al-Zn-Mg-Cu合金断裂行为的影响 被引量:6

Effect of precipitate free zone quench-induced on fracture behavior of Al-Zn-Mg-Cu alloys
下载PDF
导出
摘要 根据超高强铝合金淬火、时效组织透射电镜观察结果,以及合金断裂行为与断口形貌分析,提出了一种Al-Zn-Mg-Cu合金产生延性断裂的物理模型。对平衡相、基体沉淀相、无析出微区的断裂行为进行了分析。研究结果表明,在晶内同步变形条件下,平衡相粒子最先断裂;晶内沉淀区内裂纹的形成与扩展早于无析出区,沉淀区内初始孔洞扩展与聚合,导致沉淀区断裂,这是合金断裂的主要原因;无析出区最后断裂。引起淬火敏感性的平衡相粒子,不是造成合金断裂的直接原因,粒子周围的无析出微区起到了限制裂纹扩展和协调变形的作用,是合金形成延性拉伸断口的原因。 An intercrystalline ductile fracture physical model of ultra-high-strength Al-Zn-Mg-Cu alloy was given and the stage fracture behaviors of equilibrium phase, matrix precipitation and microzone of precipitate free zone (PFZ) were analyzed by TEM observation of the quenched and aged microstructures, the fracture behavior and morphology of Al-Zn-Mg-Cu alloy. The results show that under the synchro deformation circumstances, the equilibrium phase particles are fractured firstly, the formation and extension of fracture in intercrystalline precipitate zone are earlier than those in PFZ; the matrix precipitation is fractured due to the coaction between the primary cavities produced by equilibrium phase particles in precipitation zone and the secondary cavities produced by precipitation, this is the major fracture reason of the alloy; the precipitate free zone is fractured lastly. The equilibrium phase particles that induce the sensitivity of the quenching are not the direct reason that causes the alloy fracture; the microzone of PFZ around particles limits crack extension and coordinates deformation, this causes the formation of the ductile tension fracture.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2006年第3期392-399,共8页 The Chinese Journal of Nonferrous Metals
基金 国家重大基础研究发展规划资助项目(2005CB623706)
关键词 铝合金 淬火 平衡相 断裂 无析出区 aluminum alloy quench equilibrium phase fracture precipitate free zone
  • 相关文献

参考文献17

  • 1Young K, Chulkim S, Sublee K. A study on the microstructure of DO23 Al3Zr and LI2 (Al+ 12. 5at%Cu)3Zr intermetallic compounds synthesized by PBM and SPS[J]. Intermetallics, 2002, 10:185 - 194.
  • 2Phillips M A, Clemens B M, Nix W D. A model for dislocation behavior during deformation of Al/Al3Sc(fcc/LI2) multilayers [J]. Acta Mater, 2003, 51:3157 - 3170.
  • 3Robson J D, Prangnell P B. Modeling Al3Zr dispersoid precipitation in multicomponent aluminium alloys[A].Mater Sci Eng, 2003, 352: 240-250.
  • 4Fuller B, Seidman N, Dunand C. Mechanical properties of AI(Sc, Zr) alloys at ambient and elevated temperatures[J]. Acta Mater, 2003, 51:4803 - 4814.
  • 5Roder O, Schauerte O, lujering G, et al. Correlation between microstructure and mechanical properties of Al-Mg alloys without and with scandium[J]. Mater Sci Forum, 1999,107-113:1955-50.
  • 6Harada Y, Dunand D C. Creep properties of Al3 Sc and Al3 (Sc, X) intermetallics [J]. Acta Mater, 2000, 48:3477 - 3487.
  • 7Vijaya S, Syatyaprasad K, Gokhale A. Effect of minor Sc additions on structure, age hardening and tensile properties of Al alloy AA8090 plate[J]. Scripta Mater, 2004, 50: 903-908.
  • 8张国君,刘刚,丁向东,孙军,陈康华.含有不同尺度量级第二相的高强铝合金拉伸延性模型[J].中国有色金属学报,2002,12(z1):1-10. 被引量:17
  • 9Suni J P, Doherty R D, Weiland H, et al. Recrystallization and grain growth[A]. Proceedings of the First Joint International Conference [ C]. Berlin: Springer-Verlag, 2001. 1069 - 1077.
  • 10Turski M. Precipitation Kinetics of Al3 Zr Dispersoids in 7××× Aluminum Alloys[D]. Mancheter: University of Mancheter, 2001. 157 - 168.

二级参考文献40

  • 1[2]Brown L M,Embury J D.Initiation and growth of voids at second phase particles [R].Institute of Metals (London),Monograph and Report Series,1973,1: 164-169.
  • 2[3]Rozovsky E,Han W C Jr,Aritzur B.Behavior of particles during plastic deformation of metals [J].Metallurgical Transaction,1973,4: 927-930.
  • 3[4]Argon A S,Im J,Safoglu R.Cavity formation from inclusions in ductile fracture [J].Metallurgical Transaction,1975,6A: 825-837.
  • 4[5]Thompson A W,Weihrauch P F.Ductile fracture: nucleation at inclusions [J].Scripta Metallurgica,1976,10: 205-210.
  • 5[6]Goods S H,Brown L M.Nucleation of cavities by plastic deformation [J].Acta Metallurgica,1979,27: 1-15.
  • 6[7]Sun J,Deng Z J,Li Z H,et al.Constraint intensity in crack tip field and elastic-plastic fracture criterion [J].Engineering Fracture Mechanics,1989,34: 637-643.
  • 7[8]Sun J.Effect of stress triaxiality on micro-mechanism of void coalescence and micro-fracture ductility of materials [J].Engineering Fracture Mechanics,1991,39: 799-805.
  • 8[9]Sun J,Deng Z J,Tu M J.Effect of stress triaxiality levels in crack tip regions on the characteristics of void growth and fracture criteria [J].Engineering Fracture Mechanics,1991,39: 1051-1060.
  • 9[10]Sun J.Stress triaxiality constraint and crack tip parameters [J].Engineering Fracture Mechanics,1993,44: 789-806.
  • 10[11]Tszeng T C.Model of void nucleation from ellipsoidal inclusions in ductile fracture [J].Scripta Metallurgica Materialia,1993,28: 1065-1070.

共引文献16

同被引文献60

引证文献6

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部