摘要
在一般的序Banach空间中研究了非线性二阶微分—积分方程组初值问题整体解的存在性。本文放宽了一般文中的上控制条件,将其中的非负常数M、N、L分别推广为有界可积非负函数M(t)、N(t)、L(t),同时函数f、g对第二个变量u由强增性减弱为M(t)-增,对第四个变量Tu由增性减弱为L(t)-增,通过一个新的比较结果和不动点定理,得到了非线性二阶微分—积分方程组初值问题的整体解,证明了整体解的存在性定理。
The existence of solutions of initial value problems for systems of nonlinear second-order integro-differential equations in Banach spaces is investigated. The nonnegative constants M, N, L in the upper dominant conditions are extended to the bounded integrable nonnegative functions M (t), N (t), L (t) and the stronger monotone increasing for the second variant u and the fourth variant Tu of the functions f, g is weaken to increase for M(t)-. L (t)-. Using a new comparison result and the fixed point theorem, the existence theorem of the solutions of initial value problems for systems of nonlinear second-order integro-differential equations is obtained.
出处
《山东建筑工程学院学报》
2005年第5期70-74,共5页
Journal of Shandong Institute of Architecture and Engineering
基金
国家自然科学基金资助项目(10471075)
山东省自然科学基金(Y2003A01)
关键词
微分积分方程组
比较定理
非紧张测度
BANACH空间
systems of integro-differential equations
comparison theorem
measure of noncompactness
banach spaces