摘要
设Am是阶广义Fibonacci矩阵,设B={Akm|k∈Z,k≥0}.证明了:方程xn+yn=zn,x,y,z∈B,n∈N,n≥2没有解(n,x,y,z).
Let Am be the generalized Fibonacci matrix of order m and let B={Am^k |k∈Z,k≥0}. In this. paper we prove that the equation x^n+y^n=z^n,x,y,z∈B,n∈N,n≥2 has no solution ( n, x, y, z).
出处
《湛江师范学院学报》
2005年第6期12-14,共3页
Journal of Zhanjiang Normal College