期刊文献+

CONDITION MONITOR OF DEEP-HOLE DRILLING BASED ON MULTI-SENSOR INFORMATION FUSION 被引量:7

CONDITION MONITOR OF DEEP-HOLE DRILLING BASED ON MULTI-SENSOR INFORMATION FUSION
下载PDF
导出
摘要 A condition monitoring method of deep-hole drilling based on multi-sensor information fusion is discussed. The signal of vibration and cutting force are collected when the condition of deep-hole drilling on stainless steel 0Cr17Ni4Cu4Nb is normal or abnormal. Four eigenvectors are extracted on time-domain and frequency-domain analysis of the signals. Then the four eigenvectors are combined and sent to neural networks to dispose. The fusion results indicate that multi-sensor information fusion is superior to single-sensor information, and that cutting force signal can reflect the condition of cutting tool better than vibration signal. A condition monitoring method of deep-hole drilling based on multi-sensor information fusion is discussed. The signal of vibration and cutting force are collected when the condition of deep-hole drilling on stainless steel 0Cr17Ni4Cu4Nb is normal or abnormal. Four eigenvectors are extracted on time-domain and frequency-domain analysis of the signals. Then the four eigenvectors are combined and sent to neural networks to dispose. The fusion results indicate that multi-sensor information fusion is superior to single-sensor information, and that cutting force signal can reflect the condition of cutting tool better than vibration signal.
出处 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第1期140-142,共3页 中国机械工程学报(英文版)
关键词 Information fusion Neural networks Condition monitoring Fault diagnosis Information fusion Neural networks Condition monitoring Fault diagnosis
  • 相关文献

参考文献3

二级参考文献15

  • 1方泽南.100MW汽轮发电机组状态监测与故障诊断系统的研究[博士学位论文].北京:清华大学精密仪器与机械学系,1997..
  • 2[3]S. Rangwala and D. A. Dornfeld. Sensor Intergration UsingNeural Networks for Intelligent Tool Condition Monitoring[J]. Journal of Engineering for Industry, Aug. 1990,112:219~228
  • 3[5]A. Chiuderi, S. Fini and V. Cappellini. An Application ofData Fusion to Landcover Classification of Remote Sensed Imagery:a Neural Network Approach[A]. Proceedings of the 1994 lnternational Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI'94)[C].Las Vegas, 1994,2~5:756~762
  • 4[7]魏强.尺度共轭梯度神经网络及其在压缩机喘振监测中的应用[D]. 西安交通大学, 1996
  • 5孙刚,机械工程学报,1993年,29卷,1期,39页
  • 6胥光中,中华心血管病杂志,1992年,26卷,5期,59页
  • 7董卫平,1987年
  • 8刘经燕,振动与冲击,1987年,2期,59页
  • 9Rao S B,J Eng Ind,1986年,8期,45页
  • 10方泽南,博士学位论文,1997年

共引文献68

同被引文献88

引证文献7

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部