期刊文献+

计及变形耦合项的平面柔性梁动力学建模及频率分析 被引量:3

Dynamics modeling and frequency analysis for a planar flexible beam with coupling deformation terms
下载PDF
导出
摘要 考虑了变形产生的几何非线性效应对作大范围运动的平面柔性梁的影响,在其纵向、横向的变形位移中均考虑了变形的二次耦合变量,从非线性应变-变形位移的原理出发,说明增加耦合变量后,使得剪应变近似为零,由此得出的变形模式更符合工程实际和简化需要。考虑两个方向的变形耦合后,采用有限元离散,通过L agrange方程导出系统的动力学方程。最后对一作旋转运动的平面柔性梁进行仿真计算,并对其固有频率进行分析研究。将本文模型所得的结论,与一次耦合动力学模型、零次近似模型进行比较,说明了三种模型的差异,得到了作旋转运动的平面柔性梁的一些新特点。 A moving planar flexible beam, which incorporates the effect of the geometrically non-linear kinematics of deformation, is investigated. Considering the second-order coupling terms of deformation in the longitudinal and transversal deflections, the exact none-linear strain-displacement relations for a beam element is described. The shearing strains formulated are nearly zero, So, it is reasonable to use geometrically nonlinear deformation fields to demonstrate and simplify a flexible beam undergoing large overall motions. Then, considering the coupling terms of deformation in two dimensions, finite element shape functions of a beam element and Lagrange's equations are employed for deriving the coupling dynamical formulations. A model of a rotating planar flexible beam is presented and a frequency analysis is given in the end. The frequency resulting from the dynamic model is compared with that of one-order coupling dynamic model and zero-order approximate model ,and the difference among them is demonstrated, then some new characters of the rotating planar flexible beam are obtained.
出处 《振动工程学报》 EI CSCD 北大核心 2006年第1期75-80,共6页 Journal of Vibration Engineering
关键词 柔性结构 平面柔性梁 应变-变形位移 变形耦合项 flexible structures planar flexible beam strain-deformation displacement coupling deformation terms
  • 相关文献

参考文献16

  • 1Kane T R,Ryan R R,Banerjee A K.Dynamics of a cantilever beam attached to a moving base[J].Journal of Guidance,Control and Dynamics,1987,10 (2):139-150.
  • 2蒋丽忠,洪嘉振.柔性多体系统产生动力刚化原因的研究[J].计算力学学报,1999,16(4):403-409. 被引量:6
  • 3蹇开林,殷学纲.旋转梁的固有频率计算[J].重庆大学学报(自然科学版),2001,24(6):36-39. 被引量:8
  • 4Yoo H H,Ryan R R,Scott R A.Dynamics of flexible beams undergoing overall motions [J].Journal of Sound and Vibration,1995,181 (2):261-278.
  • 5Sharf I.Geometric stiffening in multibody dynamics formulations [J].Journal of Guidance,Control and Dynamics,1995,18 (4):882-891.
  • 6刘锦阳,洪嘉振.柔性梁的刚-柔耦合动力学特性研究[J].振动工程学报,2002,15(2):194-198. 被引量:10
  • 7杨辉,洪嘉振,余征跃.刚柔耦合建模理论的实验验证 [J].力学学报,2003,35(2):253-256. 被引量:39
  • 8Mayo J M,Garcia-vallejo G,Dominguez J.Study of the geometric stiffing effect.comparison of different formulations[J].Multibody System Dynamics,2004,11:321-341.
  • 9Pai P F,Anderson T J,Wheater E A.Large-deformation test and total-Lagrangian finite-element analyses of flexible beams [J].International Journal of Solids and Structures,2000,37:2 951-2 980.
  • 10Shi P,McPhee J,Heppler G R.A deformation field for Euler-Bernoulli beams with applications to flexible multibody dynamics [J].Multibody System Dynamics,2001,5:79-104.

二级参考文献27

  • 1潘振宽,洪嘉振.刚-弹惯性耦合下变形体动力学响应分析[J].应用力学学报,1994,11(1):41-46. 被引量:8
  • 2胡振东 洪嘉振.-[J].上海力学,1997,18:22-25.
  • 3金估权 王彬 等.柔性机械臂转动Timoshenko梁的动力学建模[M].北京:北京大学出版社,1996..
  • 4冯冠民,多体系统动力学.理论、计算方法和应用,1992年
  • 5克拉夫 R W,结构力学,1983年
  • 6陆佑方,一般力学(动力学、振动与控制)最新进展
  • 7胡振东,上海力学,1997年,18卷,增,22页
  • 8Zhang D J,Mech Struct Mach,1996年,24卷,313页
  • 9Zhang D J,Mech Struct Mach,1995年,23卷,419页
  • 10Liu A Q,Comput Meth Appl Mech Eng,1994年,114卷,379页

共引文献91

同被引文献47

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部