期刊文献+

Neural-Network-Based Charge Density Quantum Correction of Nanoscale MOSFETs

基于神经网络的纳米MOSFET载流子密度量子更正(英文)
下载PDF
导出
摘要 For the treatment of the quantum effect of charge distribution in nanoscale MOSFETs,a quantum correction model using Levenberg-Marquardt back-propagation neural networks is presented that can predict the quantum density from the classical density. The training speed and accuracy of neural networks with different hidden layers and numbers of neurons are studied. We conclude that high training speed and accuracy can be obtained using neural networks with two hidden layers,but the number of neurons in the hidden layers does not have a noticeable effect, For single and double-gate nanoscale MOSFETs, our model can easily predict the quantum charge density in the silicon layer,and it agrees closely with the Schrodinger-Poisson approach. 为了处理纳米MOSFET载流子分布的量子效应,提出了基于Levenberg-Marquardt BP神经网络的量子更正模型,通过载流子的经典密度计算其量子密度,并对拥有不同隐层数和隐层神经元数的神经网络的训练速度和精度进行了研究.结果表明:含有2个隐层的神经网络具有高的训练速度和精度,但隐层神经元数对速度和精度的影响并不明显;对于单栅和双栅纳米MOSFET,其载流子量子密度可以通过神经网络进行快速计算,其结果与Schr dinger-Poisson方程的吻合程度很高.
出处 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2006年第3期438-442,共5页 半导体学报(英文版)
基金 国家自然科学基金(批准号:60472003) 国家重点基础研究发展计划(批准号:2005CB321701)资助项目~~
关键词 neural network quantum correction nanoscale MOSFET charge density 神经网络 量子更正 纳米MOSFET 电荷密度
  • 相关文献

参考文献12

  • 1Wigger S J.Modeling ultra-small semiconductor devices.Arizona State University,2002
  • 2Choi C.Modeling of nanoscale MOSFETs.Stanford University,2002
  • 3Xia T S,Register L F,Banerjee S K.Quantum transport in double-gate MOSFETs with complex band structure.IEEE Trans Electron Devices,2003,50 (6):1511
  • 4Byunghwhan K,Sungmo K,Lee D W.Predictive model of a reduced surface field p-LDMOSFET using neural network.Solid-State Electron,2004,48:2153
  • 5Hatami S,Azizi M Y,Bahrami H R.Accurate and efficient modeling of SOI MOSFET with technology independent neural networks.IEEE Trans Computer-Aided Design of Integrated Circuits and Systems,2004,23 (11):1580
  • 6Martin T H,Howard B D,Mark B.Neural network design.Beijing:China Machine Press,2002
  • 7Tang T W,Li Y.A SPICE-compatible model for nanoscale MOSFET capacitor simulation under the inversion condition.Nanotechnology,2002,1:243
  • 8Wang X,Tang T W.Comparison of three quantum correction models for the charge density in MOS inversion layers.J Comput Electron,2002,(1):283
  • 9Li Y,Tang T,Wang X.Modeling of quantum effects for ultrathin oxide MOS structures with an effective potential.IEEE Trans Nanotechnol,2002,(1):238
  • 10Li Y M,Chao T S,Sze S M.A novel parallel approach for quantum effect simulation in semiconductor devices.Int J Modeling Simulation,2003,23:94

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部