期刊文献+

大电流场发射冷阴极发射性能的研究

Study of High Emission Current Property of CNT Cold Cathode
下载PDF
导出
摘要 研究了利用丝网印刷法制备碳纳米管阴极,以获取很大的发射电流。用传统的二极结构,在真空压强小于5×10-4Pa的条件下测量了用该方法制备的场发射阴极,阴极形状为直径3 mm的圆点。测量结果表明,阴极的最大发射电流达到11 mA。 A carbon nanotube cathode with high emission current has been fabricated with the screen printing method. A diode structure experiment apparatus has been set up to test this cathode in the condition of vacuum less than 5 × 10^-4 Pa. The diameter of the cathode is 3 mm. As a result, a total current up to 11 mA has been obtained.
出处 《真空电子技术》 2006年第1期1-4,共4页 Vacuum Electronics
基金 科技部973计划支持(No.2003CB314702)
关键词 碳纳米管 丝网印刷 大电流 Carbon nanotubes Screen printing method Large current
  • 相关文献

参考文献7

  • 1De Heer W A,Chatelain A,Ugarte D.Aligned Carnotube Films:Production and Electronic Properties[J].Science,1995,270(5293):1179-1180.
  • 2Dai H,Hafner J H,Rinzler A G,et al.Nanotubes as Nanoprobes in Scanning Probe Microscopy[J].Nature,1997,384(6605):147-150.
  • 3Dai H,Wong E W,Liebert C M.Probing Electrical Transport in Nanomaterials:Conductivity of Individual Carbon Nanotubes[J].Science,1996,272(5261):523-526.
  • 4Li W Z,Xie S S,Qian L X,et al.Large-Scale Syntheses of Aligned Carbon Nanotubes[J].Science,1996,274(5293):1701-1703.
  • 5姚振华,朱长纯,程敏,刘君华.碳纳米管高温热稳定性与结构的关系[J].液晶与显示,2002,17(1):49-54. 被引量:20
  • 6Tsai C L,Chen C F,Lin C L.Field Emission from WellAligned Carbon Nanotips Grown Ian a Gated Device Structure[J].Applied Physics Letter,2002,80(10):1821-1822.
  • 7Tang Dongsheng,Sun Lianfeng,et al.Two Possible Emission Mechanisms Involved in the Arc Discharge Method of Carbon Nanotube Preparation[J].Science Direct,2005,43:2812-2816.

二级参考文献12

  • 1[1]Iijima S.Helical microtubules of graphitic carbon[J].Nature,1991,354(6348):56-58.
  • 2[2]Cornwell C F,Wille L T.Proposed growth mechanism of single-walled carbon nanotubes[J].Chem.Phys.Lett.,1997,278(2):262-266.
  • 3[3]Menon M,Andriotis A N,Froudakis G E.Curvature dependence of the metal catalyst atom interaction with carbon nanotubes walls[J].Chem.Phys.Lett.,2000,320(5):425-434.
  • 4[4]Hernández E,Ordejón P.Tight binding molecular dynamics studies of boron assisted nanotube growth[J].J.Chem.Phys.,2000,113(11):3814-3821.
  • 5[5]Brenner D W.Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond film[J].Phys.Revi.B,1990,42(12):9485-9489.
  • 6[6]Iijima S,Brabec C,Maiti A,Bernholc J.Structural flexibility of carbon nanotubes[J].J.Chem.Phys.,1996,104(5):2089-2092.
  • 7[7]Cornwell C F,Wille L T.Low-energy properties of carbon nanotubes[J].Solid State Comm.,1997,101(5):555-559.
  • 8[8]Girifalco L A.Molecular properties of C60 in the gas and solid phases[J].Phys.Chem.,1992,96(7):858-861.
  • 9[9]Smith G D,Jaffe R.Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls[J].Phys.Chem.,1996,100(23):9624-9627.
  • 10[10]Robertson D H,Brenner D W,Mintmire J W.Energetics of nanoscale graphitic tubules [J].Phys.Rev.B,1992,45(21):12592-12595.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部