期刊文献+

Thermoelastic stresses in SiC single crystals grown by the physical yapor transport method 被引量:1

Thermoelastic stresses in SiC single crystals grown by the physical yapor transport method
下载PDF
导出
摘要 A finite element-based thermoelastic anisotropic stress model for hexagonal silicon carbide polytype is developed for the calculation of thermal stresses in SiC crystals grown by the physical vapor transport method. The composite structure of the growing SiC crystal and graphite lid is considered in the model. The thermal expansion match between the crucible lid and SiC crystal is studied for the first time. The influence of thermal stress on the dislocation density and crystal quality is discussed. A finite element-based thermoelastic anisotropic stress model for hexagonal silicon carbide polytype is developed for the calculation of thermal stresses in SiC crystals grown by the physical vapor transport method. The composite structure of the growing SiC crystal and graphite lid is considered in the model. The thermal expansion match between the crucible lid and SiC crystal is studied for the first time. The influence of thermal stress on the dislocation density and crystal quality is discussed.
出处 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2006年第1期40-45,共6页 力学学报(英文版)
基金 The project supported by the National Natural Science Foundation of China (10472126) the Knowledge Innovation Program of Chinese Academy of Sciences
关键词 Silicon carbide Physical vapor transport Thermal stress Thermoelastic Thermal expansion match Silicon carbide Physical vapor transport Thermal stress Thermoelastic Thermal expansion match
  • 相关文献

参考文献15

  • 1Chen, Q.S., Prasad, V., Zhang, H., Dudley, M.: Silicon carbide crystals -- Part II: Process physics and modeling. In:K. Byrappa, T. Ohachi (eds.) Crystal Growth Technology, William Andrew/Spdnger-Verlag, 2003.
  • 2Hofmann, D., Heinze, M., Winnacker, A., Durst, E, Kadinski, L.,Kaufmann, E, Makarov, Y., Schaifer, M.: On the sublimation growth of SiC bulk crystals: development of a numerical process model. J. Cryst. Growth, 146, 214-219 (1995).
  • 3Pons, M., Blanquet, E., J. Dedule, M., Garcon, I., Madar, R.,Bernard C.: Thermodynamic heat transfer and mass transport modeling of the sublimation growth of silicon carbide crystals.J. Electrochem. Soc., 143 (11), 3727-3735 (1996).
  • 4Chen, Q.S., Zhang, H., Ma, R.H., Prasad, V., Balkas, C.M., Yushin, N.K.: Modeling of transport processes and kinetics of silicon carbide bulk growth. J. Cryst. Growth, 225, 299-306 (2001).
  • 5Muiler, St. G., Glass, R.C., Hobgood, H.M., Tsvetkov, V.E, Brady,M., Henshall, D., Jenny, J.R., Malta, D., Carter, C.H. Jr.: The status of SiC bulk growth from an industrial point of view. J. Cryst.Growth, 211, 325-332 (2000).
  • 6Zhmakin, I.A., Kulik, A.V., Karpov, S.Yu., Demina, S.E., Ramm,M.S., Makarov, Yu. N.: Evolution of thermoelastic strain and dislocation density during sublimation growth of silicon carbide.Diamond and related materials, 9, 446-451 (2000).
  • 7Selder, M., Kadinski, L., Durst, E, Hofmann, D.: Global modeling of the SiC sublimation growth process: prediction of thermoelastic stress and control of growth conditions. J. Cryst. Growth, 226,501-510 (2001).
  • 8Ma, R.H., Zhang, H., Ha, S., Skowronski, M.: Integrated process modeling and experimental validation of silicon carbide sublimation growth. J. Cryst. Growth, 252, 523-537 (2003).
  • 9Ma, R.H., Zhang, H., Dudley, M., Prasad, V.: Thermal system design and dislocation reduction for growth of wide band gap crystals: application to SiC growth. J. Cryst. Growth, 258, 318-330(2003).
  • 10Lambropoulos John, C.: The isotropic assumption during the Czochralski growth of single semiconductors crystals. J. Cryst.Growth. 84, 349-358 (1987).

同被引文献2

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部