摘要
研究一类二阶m-点边值问题
{u″+f(t,u,u′)=0,0〈t〈1,u(0)=0,u(1)=∑i=1^m-2aiu(ζi)
其中,ai〉0,i=1,…,m-2,ζi满足0=ζ0〈ζ1〈ζ2〈…〈ζm-2〈ζm-1=1和∑i=1^m-2aiζi〈1。应用推广的Krasnoselskii's不动点定理,给出了上述边值问题至少存在一个正解的充分条件。
The paper studies the existence of positive solutions to the second order m - point boundaryvalue problem
{u″+f(t,u,u′)=0,0〈t〈1,u(0)=0,u(1)=∑i=1^m-2aiu(ζi)where ai〉0 for i=1,…,m-2,ζi satisfy 0=ζ0〈ζ1〈ζ2〈…〈ζm-2〈ζm-1=1 and ∑i=1^m-2aiζi〈1i.It provides sufficient conditions for the existence of at least one positive solution by applying the extending Krasnoselskii's fixed point theorem in cone.
出处
《军械工程学院学报》
2006年第1期68-72,共5页
Journal of Ordnance Engineering College
基金
军械工程学院科学研究基金资助项目(YJJXM05012)
关键词
M-点边值问题
不动点
锥
正解
m -point boundary value problem
fixed point
cone
positive solution