期刊文献+

一种自适应PCNN多聚焦图像融合新方法 被引量:36

A Novel Algorithm of Multi-focus Image Fusion Using Adaptive PCNN
下载PDF
导出
摘要 该文通过分析脉冲耦合神经网络(PCNN)参数模型,结合多聚焦图像的基本特点和人眼视觉特性,提出了一种自适应PCNN多聚焦图像融合的新方法。该方法使用图像逐像素的清晰度作为PCNN对应神经元的链接强度β,经过PCNN点火获得每幅参与融合图像的点火映射图,再通过判决选择算子,判定并选择各参与融合图像中的清晰部分生成融合图像。该方法中,其它参数如阈值调整常量△等对于融合结果影响很小,解决了PCNN方法的参数调整困难的问题。实验结果表明,该方法的融合效果优于小波变换方法和Laplace塔型方法。 The proposed new fusion algorithm is based on the improved Pulse Coupled Neural network(PCNN) model, the fundamental characteristics of multi-focus images and the properties of human vision system. Compared with the traditional algorithm where the linking strength of each neuron is the same and its value is chosen through experimentation, this algorithm uses the sharpness of each pixel as its value, so that the linking strength of each pixel can be chosen adaptively. After the processing of PCNN with the adaptive linking strength, new fire mapping images are obtained for each image taking part in the fusion. The clear objects of each original image are decided by the compare-selection operator with the fire mapping images pixel by pixel and then all of them are merged into a new clear image. Furthermore, by this algorithm, other parameters, for example, A, the threshold adjusting constant, only have a slight effect on the new fused image. It therefore overcomes the difficulty in adjusting parameters in PCNN. Experiments show that the proposed algorithm works better in preserving the edge and texture information than the wavelet transform method and the Laplacian pyramid method do in multi-focus image fusion.
出处 《电子与信息学报》 EI CSCD 北大核心 2006年第3期466-470,共5页 Journal of Electronics & Information Technology
基金 国家部级基金(51406050301DZ0107)资助课题
关键词 图像融合 脉冲耦合神经网络 清晰度 链接强度 点火映射图 Image fusion, Pulse-Coupled Neural Network(PCNN), Sharpness, Linking strength, Fire mapping image
  • 相关文献

参考文献15

  • 1Aggarwal J K. Multi-Sensor Fusion for Computer Vision[M]. Berlin.. Springer-Verlag, 1993, chapter 1.
  • 2Eckhorn R, Reiboeck H J, Arndt M, et al. A neural networks for feature linking via synchronous activity: results from eat visual cortex and from simulations. In: R. M. J. Cotterill, editor, Models of Brain Function,, Cambridge: Cambridge Univ. Press, 1989:255 - 272.
  • 3Eckhom R. Neural mechanisms of scene segmentation:recordings from the visual cortex suggest basic circuits or linking field models[J]. 1EEE Trans. on Neural Network, 1999, 10(3):464 - 479.
  • 4lzhikevich E M. Class 1 neural excitability, conventional synapses,weakly connected networks, and mathematical foundations of pulse coupled models[J]. IEEE Trans. on Neural Network, 1999,10(3): 499 - 507.
  • 5lzhikevich E M. Weakly pulse-coupled oscillators, FM interactions, synchronization, and oscillatory associative memory[J]. IEEE Trans. on Neural Networks, 1999, 10(3):508 - 526.
  • 6付小宁,殷世民,吴志鹏,刘上乾.红外图像的动态阈值分割[J].光电工程,2002,29(6):57-60. 被引量:39
  • 7Johnson J L, Padgett M L. PCNN models and applications[J]. 1EEE Trans. on Neural Networks, 1999, 10(3):480 - 498.
  • 8石美红,张军英,张晓滨,樊秀菊.基于改进型脉冲耦合神经网络的图像二值分割[J].计算机仿真,2002,19(4):42-46. 被引量:25
  • 9马义德,戴若兰,李廉.一种基于脉冲耦合神经网络和图像熵的自动图像分割方法[J].通信学报,2002,23(1):46-51. 被引量:145
  • 10顾晓东,程承旗,余道衡.基于粗集与PCNN的图像预处理[J].北京大学学报(自然科学版),2003,39(5):703-708. 被引量:8

二级参考文献30

  • 1章毓晋.图像工程(上)--图像处理和分析[M].北京:清华大学出版社,2000.1-46,81-106.
  • 2[1]Broussard R P, Rogers S K, Oxley M E, et al.. Physiologically motivated image fusion for object detection using a pulse coupled neural network[J]. IEEE Trans. on Neural Networks, 1999, 10(3):554-563.
  • 3[2]Liu X, Wang D L. Range image segmentation using a relaxation oscillator networks[J]. IEEE Trans. on Neural Networks, 1999, 10(3): 564-573.
  • 4[3]Kinser J M. Foveation by a pulse-coupled neural network[J]. IEEE Trans. on Neural Networks,1999, 10(3): 621-625.
  • 5[4]Johnson J L, Padgett M L. PCNN Models and Applications[J]. IEEE Trans. on Neural Networks,1999, 10(3): 480-498.
  • 6[5]Jcaufield H, Kinser J M. Finding shortest path in the shortest time using PCNN's[J]. IEEE Trans.on Neural Networks, 1999, 10(3): 604-606.
  • 7[6]Ranganath H S, Kuntimad G. Object detection using pulse coupled neural networks[J]. IEEE Trans. on Neural Networks, 1999, 10(3): 615-620.
  • 8[7]Wells D M. Solving degenerate optimization problems using networks of neural oscillators[J].Neural networks, 1992, 5(6): 949-959.
  • 9[8]Gu Xiaodong, Wang Haiming, Yu Daoheng. Binary image restoration using pulse coupled neural network. The 8th International Conference on Neural Information Processing, ICONIP-2001,Shanghai, China, 2001: 922-927.
  • 10[9]Johnson J L, Padgett J L, Friday W O. Multiscale image factorization. In Proc. IEEE Int. Conf.Neural Networks, Houston, TX, June 1997: 1465-1468.

共引文献208

同被引文献307

引证文献36

二级引证文献247

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部