期刊文献+

Li_(1.15-x)Ni_(0.33)Co_(0.33)Mn_(0.33)O_(2+δ)溶胶-凝胶法合成、表征及合成机理 被引量:5

Characterization and Synthesis Reaction Mechanism of Li_(1.15-x)Ni_(0.33)Co_(0.33)Mn_(0.33)O_(2+δ) Cathode for Li-ion Battery
下载PDF
导出
摘要 以可溶性盐为原料采用溶胶-凝胶法合成了具有六方层状结构的Li1.15-xNi0.33Co0.33- Mn0.33O2+δ(LNCMO)固溶体.用X射线衍射(XRD)、光电子能谱(XPS)、扫描电镜(SEM)、循环伏安(CV)、充放电测试等表征了其结构、形貌、过渡金属元素的离子价态及电化学性能,结合热重-差热分析(TG-DTA)及变温过程XRD结果分析了合成机理.950℃样品以 0.1mA/cm2的电流密度在2.5-4.5V间首次放电容量为190mAh/g,循环10次后为180mAh/g, 表明样品具有较好的电化学性能.前驱物在较低温度下分解即可形成层状LNCMO主相,高温焙烧不仅可稳定材料的层状结构,而且能显著提高其结晶性,固溶体的形成可分为以下三步: (1)前驱物氧化分解的同时生成Li-Ni-Co-Mn-O固溶体;(2)残余的Li2CO3分解产生Li2O; (3)表面的Li2O逐步扩散到固溶体内部,形成单相Li-Ni-Co-Mn-O固溶体. The cathode material for lithium batteries Li1.15-xNi0.33Co0.33Mn0.33O2+δ with good electrochemical properties was synthesized by the sol-gel method. The synthesis mechanism was examined via X-ray diffraction, X-ray photoelectron spectra, scanning electron microscopy, thermo- gravimetric analysis and difference thermal analysis and cyclic voltammetry. Li1.15-xNi0.33Co0.33Mn0.33O2+δ exhibited initial specific discharge capacity of 190mAh/g and tenth of 180mAh/g at 2.5-4.5V by current density of 0.1 mA/cm^2. That Li1.15-xNi0.33Co0.33Mn0.33O2+δ main phase can be obtained as low as 400℃ is attributed to the short distance among lithium, manganese, cobalt and nickel formed in precursor prepared by the citric acid gel process. The crystallinty and layered structure were improved by sintering at high temperature. The solid solution formation could be a three-step process: (1) formation of small particle Li-Ni-Co-Mn-O solid solution main phase at lower temperature; (2) decomposition of residual lithium carbonate; (3) bulk diffusion of lithium oxide from exterior into the bulk of Li-Ni-Co-Mn-O solid solution.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2006年第2期397-402,共6页 Journal of Inorganic Materials
基金 国家十五"863"高科技项目(2002AA323100)教育部高校博士点基金(20030533001)
关键词 Li1.15-xNi0.33Co0.33Mn0.33O2+δ 溶胶-凝胶法 反应机理 Li1.15-xNi0.33Co0.33Mn0.33O2+δ sol-gel method reaction mechanism
  • 相关文献

参考文献15

  • 1Lee M H, Kang Y J, Myung, et al. Electrochimica Acta. 2004, 50: 939-948.
  • 2Todorov Y M, Numata K. Electrochimica Acta. 2004, 50: 493-497.
  • 3Shaju K M, Subba Rao G V, Chowdari B. Electrochim Acta. 2003, 48 (11): 1505-1514.
  • 4Koyama Y, Tanaka I, Adachi H, et al. J. Power Sources. 2003, 119-121: 644-648.
  • 5Kim J M, Chung H T. Electrochimica Acta. 2004, 49 (21): 3573-3580.
  • 6Kim J M, Chung H T. Electrochimica Acta. 2004, 49 (6): 937-944.
  • 7Chen Y, Wang G X, Konstantinov K, et al. J. Power Sources. 2003, 119-121: 184-188.
  • 8Yabuuchi N, Ohzuku T. J. Power Source. 2003, 119-121: 171-174.
  • 9Shaju K M, Subba Rao G V, Chowdari B V R. Solid State Ionics. 2002, 152-153: 69-81.
  • 10Ardizzone S, Bianchi C L, Tirelli D. Colloids and Surfaces. 1998, 134: 305-312.

同被引文献147

引证文献5

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部