期刊文献+

一种改进的FNN及其在德士古炉温软测量中的应用 被引量:1

Improved Fuzzy Neural Network and Application of the Temperature Measurement of Texaco Slurry Gasifier
下载PDF
导出
摘要 在模糊神经网络中采用传统的梯度下降优化方法,其搜索速度慢,并易于陷于局部最小的缺点,提出一种自适应粒子群算法,采用由一个模糊推理机来动态地修改速度参数,模糊推理机的两个输入分别是当前速度参数,以及规范化的当前最好性能估计,输出是速度参数的增量;并将该方法用于模糊神经网络的参数的优化中,得到一种新的建模方法。最后以德士古气化炉为对象,用该方法建立炉膛温度的软测量模型,结果表明该方法该模型运算速度快,同时具有良好泛化性能,能够满足软测量建模精度的要求。 This paper offers an Adaptive PSO Algorithm.A fuzzy system is implemented to dynamically adapt the inertia weight of the PSO,here two variables are selected as inputs to the fuzzy system (the current best performance evaluation and the current inertia weight),the output variable is the change of inertia weight.At the same time,this method is applied to optimize the parameter of the FNN,so a new modeling method can be achieved. Finally,the modeling method is used to model the temperature measurement of Texaco slurry gasifie,the result shows that it can calculates at the higher speed,less fuzzy rules and better generalization capability and achieve satisfactory prediction precision.
出处 《工业控制计算机》 2006年第3期9-11,共3页 Industrial Control Computer
基金 上海市曙光计划项目(03SG26)
关键词 减法聚类 PSO 模糊模型 软测量 聚类半径 气化炉 subtractive clustering,PSO,fuzzy model,soft sensor,radius of cluster center,gasifier
  • 相关文献

参考文献9

  • 1Nie J Constructing fuzzy model by self-organizing counter propagation network.IEEE Transactions on System,Man and Cybernetics,1995 25(6):963~970
  • 2Li R.P Mukaidono M..Fuzzy modeling and clustering neural network.Control and Cybernetics,1996 25(2):225~242
  • 3Jang J.,Sun C Neuro-fuzzy modeling and control Proceedings of the IEEE.1995 83(3):378~406
  • 4王岁花,冯乃勤,李爱国.一类新颖的粒子群优化算法[J].计算机工程与应用,2003,39(13):109-110. 被引量:20
  • 5张丽平,俞欢军,陈德钊,胡上序.粒子群优化算法的分析与改进[J].信息与控制,2004,33(5):513-517. 被引量:85
  • 6Shi Y,Eberhart R C.A modified particle swarm optimizer[A].Proceedings of the IEEE Congress on Evolutionary Computation[C],Piscataway,NJ:IEEE Press.1998:303~308
  • 7Shi Y,Eberhart R C,Empirical study of particle swarm optimization[A].Proceedings of the IEEE Congress on Evolutionary Cornputation[C].Piscataway,NJ:IEEE Press.1999:1945~1950
  • 8Dragan Kukolj.Design of adaptive Takagi-Sugeno-Kang fuzzy models[J].Applied Soft Computing,2002,2:89~103
  • 9王文西,李青,等.德士古水煤浆气化技术讲义.上海焦化总厂煤气德士古车间,1999

二级参考文献20

  • 1[1]Kennedy J, EberhartRC. Particle swarm optimization [A]. Proceedings of IEEE International Conference on Neural Networks [C]. Piscataway, NJ: IEEE Press, 1995.1942 ~ 1948.
  • 2[2]Eberhart R C, Kennedy J. A new optimizer using particle swarm theory [A]. Proceedings of the Sixth International Symposium on Micro Machine and Human Science [ C]. Nagoya, Japan: IEEE Press, 1995. 39~43.
  • 3[3]Eberhart R C, Simpson P K, Dobbins R W. Computational Intelligence PC Tools [M]. Boston, MA: Academic Press Professional,1996.
  • 4[4]Shi Y, Eberhart R C. A modified particle swarm optimizer [A].Proceedings of the IEEE Congress on Evolutionary Computation [C]. Piscataway, NJ: IEEE Press, 1998.303~308.
  • 5[5]Shi Y, Eberhart R C. Empirical study of particle swarm optimization [A]. Proceedings of the IEEE Congress on Evolutionary Computation [C]. Piscataway, NJ: IEEE Press, 1999.1945 ~ 1950.
  • 6[6]Shi Y, Eberhart R C. Fuzzy adaptive particle swarm optimization [A]. Proceedings of the IEEE Congress on Evolutionary Computation [C]. Seoul, Korea: IEEE Press, 2001. 101 ~106.
  • 7[7]Clerc M, Kennedy J. The particle swarm - explosion, stability,and convergence in a multidimensional complex space [ J ]. IEEE Transactions on Evolutionary Computation, 2002,6( 1 ): 58 ~73.
  • 8[8]Eberhart R C, Shi Y. Comparing inertia weight and constriction factors in particle swarm optimization [ A ]. Proceedings of the IEEE Congress on Evolutionary Computation [ C ]. San Diego,CA: IEEE Press, 2000.84 ~ 88.
  • 9[9]Miranda V, Fonseca N. EPSO-best-of-two-worlds meta-heuristic applied to power system problems [ A ]. Proceedings of the IEEE Congress on Evolutionary Computation [ C ]. Honolulu, Hawaii,USA: IEEE Press, 2002. 1080 ~ 1085.
  • 10Kennedy J, Eberhart R.Particle Swarm Optimization[C].In : IEEE Int'l Conf on Neural Networks, 1995 : 1942-1948.

共引文献103

同被引文献6

  • 1王新刚,侍洪波.德士古气化炉炉温软测量建模及其工程实现[J].化工自动化及仪表,2006,33(3):59-63. 被引量:5
  • 2Vapnik V. The Nature of Statistical Learning Theory[M]. New York: Springer Verlag, 1995: 181-197.
  • 3Suykens J. Least Squares Support Vector Machines[M].Singapore: World Scientific Publishing Co Pte Ltd, 2002:71-89.
  • 4Suykens J, Vandewalle J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3) : 293- 300.
  • 5Suykens J, Barbanter J De, Lukas L, et al. Weighted least squares support vector machines: Robustness and sparse approximation[J]. Neurocomputing, 2002, 48(1 4): 85-105.
  • 6Cummins D J, Andrews C W. Iteratively re-weighted partial least squares: A performance analysis by Monte Carlo simulation[J]. Journal of Chemometrics, 1995, 9(6): 489-507.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部