期刊文献+

并行计算稀疏矩阵乘以向量的负载平衡算法 被引量:2

A Load-Balancing Algorithm for Sparse Matrix-Vector Multiplication on Parallel Computers
下载PDF
导出
摘要 稀疏矩阵乘以一个向量(SpM×V)的问题是许多大型应用问题的核心计算问题,文中提出了一种在并行计算机上并行计算SpM×V的负载平衡算法,计算复杂性为O(N)(N为稀疏矩阵的阶),而目前计算此类问题的最优负载平衡算法的计算复杂性为O(N.P)(P为处理机台数)。文章最后给出了并行数值实验。 In this paper, we consider the load-balancing multiplication of a large sparse matrix with a large sequence of vectors on parallel computers. We propose a load-balancing algorithm based on non-zero values even the allocation of the sequence rows of sparse matrices. The complexity of this algorithm is O(N), where N is the number of rows in the matrix. In contrast to the best current algorithm with the complexity of O(N · P), where P is the number of processors, the performance of our approach is much better. Especially, because our algorithm is based on the sequence row allocation of sparse matrices, we can conveniently compose the parallel code and optimize the communications.
出处 《计算机工程与科学》 CSCD 2006年第3期76-77,91,共3页 Computer Engineering & Science
基金 十五武器装备预研基金资助项目 计算物理国家重点实验室基金资助项目(2000JS76.4.1KG0119)
关键词 并行计算 稀疏矩阵乘以向量 负载平衡 parallel eomputing sparse matrix-vector multiplication load balancing
  • 相关文献

参考文献5

  • 1R Geus,S Rollin.Towards a Fast Parallel Sparse Symmetric Matrix Vector Multiplication[J].Parallel Computing,2001,27(2):883-896.
  • 2D Heras,J Cabuleiro,F Rivera.Modeling Data Locality for the Sparse Matrix-Vector Product Using Distance Measures[J].Parallel Computing,2001,27(2):897-912.
  • 3J Aliaga,V Hemndez.Symmetric Sparse Matrix-Vector Product on Distributed Memory Multiprocessors[A].Proc of the Conf on Parallel Computing and Transputers Applications[C].1992.
  • 4S Nastea,O Frieder,E Tarek.Load-Balanced Sparse Matrix-Vector Multiplication on Parallel Computers[J].Journal of Parallel and Distributed Computing,1997,46(2):180-193.
  • 5I S Duff,R G Grimes,J G Lewis.Users' Guide for the Harwell-Boeing Sparse Matrix Collection[R].Report TR/PA/92/86,CERFACS,1992.

同被引文献11

  • 1张舒;褚艳利;赵开勇.GPU高性能运算之CUDA[M]北京:中国水利水电出版社,2009.
  • 2多相复杂系统国家重点实验室;多尺度离散模拟项目组.基于GPU的多尺度离散模拟并行计算[M]北京:科学出版社,2009.
  • 3Ryoo S,Rodrigues C I. Optimization Principles and Application Performance Evaluation of a Multithreaded GPU Using CUDA[A].2008.73-82.
  • 4Bolz J,Farmer I,Grinspun E. Sparse Matrix Solvers on the GPU:Conjugate Gradients and Multigrid[A].2003.1-4.
  • 5Garland M. Sparse Matrix Computations on Manycore GPUs[A].2008.1-5.
  • 6Bell N,Garland M. Efficient Sparse Matrix-Vector Multiplication on CUDA[A].2009.20-28.
  • 7Choi J W,Singh A,Vuduc R W. Model-Driven Autotuning of Sparse Matrix-Vector Multiply on GPUs[A].2010.115-126.
  • 8Yang Canqun,Ge Zhen,Chen Juan. Accelerating PQMRCGSTAB Algorithm on GPU[A].2009.11-16.
  • 9孙相征,张云泉,王婷,李焱,袁良.对角线稀疏矩阵的SpMV自适应性能优化[J].计算机研究与发展,2013,50(3):648-656. 被引量:4
  • 10阳王东,李肯立,石林.一种准对角矩阵的混合压缩算法及其与向量相乘在GPU上的实现[J].计算机科学,2014,41(7):290-296. 被引量:5

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部