摘要
本文提出一种新的搜索最大频繁项集的算法。该算法使用多层扩展深度优先搜索方法,结合有效的前瞻剪枝策略,明显加速了最大频繁项集的生成,从而显著地降低了CPU时间。
We present KMAX, a new depth-first search algorithm for mining maximal frequent itemsets. KMAX uses a novel technique called multilevel extension to extend the items in the search tree with an efficient look-ahead pruning method to prune the search space. Experimental comparison with the previous work indicates that it obviously accelerates the generation of maximal frequent itemsets , therefore the CPU time is reduced remarkably.
出处
《计算机工程与科学》
CSCD
2006年第3期78-80,共3页
Computer Engineering & Science
关键词
最大频繁项集
多层扩展
深度优先搜索
前瞻剪枝
maximal frequent itemset
multilevel extension
depth-first search
look-ahead pruning