期刊文献+

多层扩展挖掘最大频繁项集

Mining Maximal Frequent Item Sets Based on Multilevel Extension
下载PDF
导出
摘要 本文提出一种新的搜索最大频繁项集的算法。该算法使用多层扩展深度优先搜索方法,结合有效的前瞻剪枝策略,明显加速了最大频繁项集的生成,从而显著地降低了CPU时间。 We present KMAX, a new depth-first search algorithm for mining maximal frequent itemsets. KMAX uses a novel technique called multilevel extension to extend the items in the search tree with an efficient look-ahead pruning method to prune the search space. Experimental comparison with the previous work indicates that it obviously accelerates the generation of maximal frequent itemsets , therefore the CPU time is reduced remarkably.
出处 《计算机工程与科学》 CSCD 2006年第3期78-80,共3页 Computer Engineering & Science
关键词 最大频繁项集 多层扩展 深度优先搜索 前瞻剪枝 maximal frequent itemset multilevel extension depth-first search look-ahead pruning
  • 相关文献

参考文献6

  • 1R Agrawal,T Imielinski,A Swami.Mining Association Rules Between Sets of Items in Large Databases[A].Proc of Special Interest Group on Management of Data[C].1993.207-216.
  • 2H Mannila,H Toivonen.Levelwise Search and Borders of Theories in Knowledge Discovery[J].Data Mining and Knowledge Discovery,1997,1(3):241-258.
  • 3R J Bayardo.Efficiently Mining Long Patterns from Databases[A].Proc of Special Interest Group on Management of Data[C].1998.85-93.
  • 4Ramesh C Agarwal,Charu C Aggarwal,V V V Prasad.Depth First Generation of Long Patterns[A].Proc of the 7th Int'l Conf on Knowledge Discovery and Data Mining[C].2000.108-118.
  • 5Doug Burdick,Manuel Calimlim,Johannes Gehrke.Mafia:A Maximal Frequent Itemset Algorithm for Transactional Databases[A].Proc of the 17th Int'l Conf on Data Engineering[C].2001.443-452.
  • 6K Gouda,M J Zaki.Efficiently Mining Maximal Frequent Itemsets[A].1st IEEE Int'l Conf on Data Mining (ICDM)[C].2001.163-170.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部