期刊文献+

多自由度含间隙振动系统周期运动的二重Hopf分岔 被引量:6

DOUBLE HOPF BIFURCATION OF PERIODIC MOTION OF THE MULTI-DEGREE-OF-FREEDOM VIBRATORY SYSTEM WITH A CLEARANCE
下载PDF
导出
摘要 基于Poincaré映射方法和数值仿真分析了多自由度含间隙振动系统对称型周期碰撞运动的稳定性与二重Hopf分岔。应用映射的中心流形和范式方法,研究了高维映射在其Jacobian矩阵两对复共轭特征值同时穿越复平面单位圆周情况下的余维二分岔,分析了映射在二重Hopf分岔点附近的双参数开折,揭示了含间隙振动系统在二重Hopf分岔点附近的动力学行为。含间隙振动系统在二重Hopf分岔点附近存在对称型周期碰撞运动、对称型周期碰撞运动的Hopf分岔、环面分岔及“轮胎”型概周期吸引子。环面分岔导致了半吸引不变环和复杂的“轮胎”型概周期吸引子。 A multi-degree-of-freedom vibratory system having symmetrically placed rigid stops and subjected to periodic excitation is considered. Local codimension two bifurcation of the vibro-impact system, concerning two complex conjugate pairs of eigenvalues of linearized map escaping the unit circle simultaneously, is analyzed using the center manifold theorem and normal form method of maps. Local behavior of the system, near the point of double Hopf bifurcation, is investigated using qualitative analysis and numerical simulation. Near the value of double Hopf bifurcation there exist period-one double-impact symmetrical motion, Hopf bifurcation and toms bifurcation. The quasi-periodic impact motions are represented by the closed circle and "tire-like" a^actor in projected Poincaré sections. With change of system parameters, the quasi-periodic impact motions usually lead to chaos via "tire-like" tori doubling.
出处 《工程力学》 EI CSCD 北大核心 2006年第3期37-43,68,共8页 Engineering Mechanics
基金 国家自然科学基金资助项目(50475109 10572055) 甘肃省自然科学基金资助项目(ZS-031-A25-007-Z重大项目)
关键词 间隙 振动 冲击 二重Hopf分岔 环面分岔 混沌 clearance vibration impact double Hopfbifurcation toms bifurcation chaos
  • 相关文献

参考文献14

  • 1Shaw S W,Holmes P J.A periodically forced impact oscillator with large dissipation[J].Journal of Applied Mechanics,1983,50:849~857.
  • 2李群宏,陆启韶.碰振系统中的共存周期轨道[J].应用数学和力学,2003,24(3):234-244. 被引量:17
  • 3Nguyen D T,Noah S T and Kettleborough C F.Impact behavior of an oscillator with limiting stops,part I:a parametric study[J].Journal of Sound and Vibration.1986,109(2):293~307.
  • 4金栋平,胡海岩.PERIODIC VIBRO-IMPACTS AND THEIR STABILITY OF A DUAL COMPONENT SYSTEM[J].Acta Mechanica Sinica,1997,13(4):366-376. 被引量:17
  • 5Nordmark A B.Non-periodic motion caused by grazing incidence in an impact oscillator[J].Journal of Sound and Vibration,1991,145(2):279~297.
  • 6Peterka F and Vacik J.Transition to chaotic motion in mechanical systems with impacts[J].Journal of Sound and Vibration 1992,154(1):95~115.
  • 7Whiston G S.Global dynamics of vibro-impacting linear oscillator[J].Journal of Sound and Vibration,1987,118(3):395~429.
  • 8罗冠炜,谢建华.冲击振动落砂机的周期运动稳定性与分叉[J].机械工程学报,2003,39(1):74-78. 被引量:19
  • 9Hu Haiyan.Controlling chaos of a periodically forced nonsmooth mechanical system[J].Acta Mechanica Sinica,1995,11(3):251~258.
  • 10Hu H Y.Controlling chaos of a dynamical system with discontinuous vector field[J].Physica D,1997,106:1~8.

二级参考文献33

  • 1闻邦椿 刘树英 张纯宇.机械振动学[M].北京:冶金工业出版社,1999..
  • 2[1]Guckenheimer J,Holmes P.Nonlinear Oscillations,Dynamical Systems,and Bifurcations of Vector Fields[M].New York:Springer-Verlag,1986.
  • 3[2]Wigins S.Introduction to Applied Nonlinear Dynamical Systems and Chaos[M].(Reprinted).New York:Springer-Verlag,1991.
  • 4[3]Wiggins S.Global Bifurcations and Chaos,Analytical Methods[M].New York:Springer-Verlag,1988.
  • 5[4]Bazejczyk-Okolewska B,Kapitaniak T.Co-existing attractors of impact oscillator[J].Chaos,Solitons & Fractals,1998,9(8):1439-1443.
  • 6[5]Feudel U,Grebogi C,Poon L,Yorke J A.Dynamical properties of a simple mechanical system with a large number of coexisting periodic attractors[J].Chaos,Solitons & Fractals,1998,9(1/2):171-180.
  • 7[6]Whiston G S.Global dynamics of a vibro-impacting linear oscillator[J].J Sound Vib,1987,118(3):395-424.
  • 8[7]Shaw S W,Holmes P J.A periodically forced piecewise linear oscillator[J].J Sound Vib,1983,90(1):129-155.
  • 9[8]Ivanov A P.Stabilization of an impact oscillator near grazing incidence owing to resonance[J].J Sound Vib,1993,162(3):562-565.
  • 10[9]Whiston G S.Impacting under harmonic excitation[J].J Sound Vib,1979,67(2):179-186.

共引文献47

同被引文献57

引证文献6

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部