期刊文献+

温室网纹甜瓜叶面积与光合生产模拟模型研究 被引量:20

Simulation of leaf area and photosynthetic production of greenhouse muskmelon
下载PDF
导出
摘要 依据温室温光条件与甜瓜单株叶面积的关系,建立了甜瓜叶面积指数(LAI)模型,结合已有的光合作用驱动的作物生长模型,建立了适合我国种植技术的甜瓜光合作用与干物质积累动态模型。利用不同基质、品种和播期的试验资料对模型进行了检验。结果表明,本模型较用比叶面积和叶干重的SLA法及用积温与叶面积的函数的GDD法更能准确地模拟温室甜瓜的LAI和植株总干重。LAI的模拟值与实测值之间的决定系数(R2)和回归估计标准误(RMSE)分别为0.867和0.404,植株总干重的模拟值与实测值之间的R2和RMSE分别为0.887和645 kg.hm-2。用本模型模拟LAI的精度分别比SLA法和GDD法提高78%和40%;模拟植株总干重的精度分别比SLA法和GDD法提高57%和36%。本模型不仅改善了甜瓜叶面积和干物质生产的模拟精度,而且提高了模型的实用性。 A greenhouse muskmelon leaf area simulation model was developed based on the relationship between leaf area per plant and the product of thermal effectiveness and photosynthetically active radiation (TEP). Then a process-based photosynthesis and dry matter production model of greenhouse muskmelon was developed by integrating the leaf area index (LAI) model into the exist- ing photosynthesis-driven crop growth model. Experiments with different sowing dates, varieties and substrates were carried out in Shanghai and Nanjing to collect data to calibrate and validate the model. The results show that the model can predict leaf area and total dry weight of greenhouse muskmelon more accurately than the traditional specific leaf area (SLA) and growing degree days (GDD) based models. The determination coefficient (R2) and the root mean squared error (RMSE) between the observed and the predicted LAI based on the 1 : 1 line are 0. 867 and 0. 404, respectively. The R^2 and RMSE between the predicted and the measured total biomass based on the 1 : 1 line are 0. 887 and 645 kg · hm^-2, respectively. Compared to the SLA and GDD based models, the prediction accuracy of the TEP based model is 78% and 40% higher, respectively, for LAI, and 57% and 36% higher, respectively, for total biomass. The model developed in this study improves not only the prediction accuracy of leaf area and dry matter production, but also the user-friendliness of the model.
出处 《南京农业大学学报》 CAS CSCD 北大核心 2006年第1期7-12,共6页 Journal of Nanjing Agricultural University
基金 国家自然科学基金资助项目(60073028) 国家863计划资助项目(2001AA247023) 上海市科技兴农重点攻关资助项目(农科字2002第311号)
关键词 叶面积指数 光合生产 干物质积累 模拟模型 leaf area index photosynthetic production dry matter accumulation simulation model
  • 相关文献

参考文献18

  • 1Goudriaan J,van Laar H H.Modeling Potential Crop Growth Processes[ M ].Amsterdam:Kluwer Academic Publishers,1994:29-118
  • 2Marcelis L F M,Gijzen H.A model for prediction of yield and quality of cucumber fruits[ J].Acta Horticulturae,1998,476:237 -242
  • 3Dayan E,Keulen H,Joness J W,et al.Development,calibration and validation of a greenhouse tomato growth model:Ⅰ.Description of the model[J].Agricultural Systems,1993,43(2):145 -163
  • 4Dayan E.Development,calibration and validation of a greenhouse tomato growth model:Ⅱ.Field calibration and validation[ J].Agricultural System,1993,43(2):165-183
  • 5Gijzen H,Heuvelink E,Challa H,et al.HORTISIM:a model for greenhouse crops and greenhouse climate[ J ].Acta Horticulturae,1998,456:441-450
  • 6Heuvelink E.Tomato growth and yield:quantitative analysis and synthesis[ D].Amsterdam:Wageningen Agricultural University,1996:87-144
  • 7Marcelis L F M,Heuvelink E,Goudriaan J.Modelling biomass production and yield of horticultural crops:a review[ J ].Scientia Horticulturae,1998,74:83-111
  • 8de Visser C L M.ALCEPAS,an onion growth model based on SUCROS87:I.Development of the model[ J ].Journal of Horticultural Science,1994,69:501-518
  • 9李娟,郭世荣,罗卫红.温室黄瓜光合生产与干物质积累模拟模型[J].农业工程学报,2003,19(4):241-244. 被引量:42
  • 10谢祝捷,陈春宏,余纪柱,李世诚,罗卫红.上海自控温室黄瓜干物质生产和分配模拟模型研究[J].上海农业学报,2004,20(1):75-79. 被引量:21

二级参考文献24

  • 1[1]Spitters CJT. Separating the diffuse and direct component of global radiation and its implications for modeling canopy photosynthesis: Ⅱ. Calculation of canopy photosynthesis[J]. Agric. For. Meteorol,1986,38: 231~242.
  • 2[2]Goudriaan J. A simple and fast numerical method for the computation of daily totals of crop photosynthesis[J]. Agric. For. Meteorol,1987,38:249~254.
  • 3[3]Marcelis LFM. A simulation model for dry matter partitioning in cucumber[J]. Ann. Bot,1994,74:43~52.
  • 4[4]Dayan E. Development, calibration and validation of a greenhouse tomato growth model.Ⅰ. Description of the model[J]. Agriculture System, 1993, 43:145~163.
  • 5[5]Heuvelink E,Bertin N. Dry matter partitioning in a tomato crop: Comparison of two simulation models[J]. J. Hortic. Sci,1994, 95:885~903.
  • 6[6]Penning de Vries, et al. Simulation of ecophysiological processes of growth in several annual crops[M]. IRRI Los Banos.1989.
  • 7[7]Heuvelink E, Marcelis LFM. Dry matter distribution in tomato and cucumber[J]. Acta Hortic. Sci,1989, 260:149~157.
  • 8[8]Heuvelink E. Growth, development and yield of a tomato: periodic destructive measurements in a greenhouse[J]. Sci.Hortic,1995,61:77~99.
  • 9C.P. Yialouris, H.C. PassamA. B. Sideridis, C. Metin. VEGE S-A multilingual Expert System for the Diagnosis of Pests, Diseases and Nutritional Disorders of Six Greenhouse Vegetables[J],. Computers and Electronics inAgriculture, 1997,(19): 55-57.
  • 10S. TUNEZ , A. BOSCH, F. BIENVENIDO . Strategic Knowledge In An Expert System For Agriculture[J].Cybernetics and Systems, An International Journal,1992, (23): 401-415.

共引文献119

同被引文献349

引证文献20

二级引证文献213

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部