期刊文献+

非结构网格上Euler方程的区域分裂算法及并行计算 被引量:2

Domain decompositions and parallel algorithms to solve Euler equations on the unstructured grid
下载PDF
导出
摘要 改进了“波阵面”区域分裂算法,并应用于流场区域的划分;对于子区域边界的不光滑现象,为尽量减少通讯消耗,提出了一种边界并行优化策略。利用PVM并行环境,探讨了非结构网格上求解Euler方程的分区并行算法。根据改进的区域分裂算法及优化策略,运用Jameson有限体积法,对二维翼型流场进行了分区并行求解,多区计算的结果与单区计算的结果作了比较,表明了本文研究方法的有效性。 Wave-front domain splitting algorithm is improved, and then applied to the domain decompositions of the flow field. A new optimization strategy of subdomain boundary is subsequently presented in order to improve the smoothness of boundaries and save the mutual overheads among processors. According to the improved algorithm and the optimization method, parallel algorithms to solve the Euler equations are studied on the unstructured grids. The domain decomposition and parallel solver with Jameson finite volume scheme are applied to the flow over airfoils. Comparison between the multidomains and single domain demonstrates the high effectiveness of the algorithms.
出处 《空气动力学学报》 EI CSCD 北大核心 2006年第1期102-108,119,共8页 Acta Aerodynamica Sinica
关键词 区域分裂算法 非结构网格 EULER方程 有限体积法 并行计算 domain splitting algorithm unstructured grid Euler equations finite volume scheme parallel calculations
  • 相关文献

参考文献8

  • 1VENKATAKRISHNAN V,SIMON H D,BARTH T J.A MIMD implementation of a parallel Euler solver for unstructured grids[R],NASA RNR-91-024,1991.
  • 2POTHEN A,SIMON D H,LIOU K P.Partitioning sparse ma trices with eigenvectors of graphs[J].SIAM J.Matrix Anal.Appl,1990,(11):430-452.
  • 3HENDRICKSON B,LELAND R.Multilevel algorithm for partitioning graphs[R].Tech.Rep.SAND93-1301,Sandia National Labs,Albuquerque,NM,1993.
  • 4LOHNER R,PARALLEL.Unstructured grid generation[R].AIAA-91-1582-CP,1991.
  • 5LOHNER R.A Parallelizable load balancing algorithm[R].AIAA-93-0061,1993.
  • 6JAMESON A.SCHMIDT W,TURKEL,Numerical solution of the Euler equations by finite volume methods using Runge-Kutta time stepping schemes[R].AIAA Paper 81-1259,1981.
  • 7周春华.并行计算中一种非结构网格分割方法[J].航空学报,2004,25(3):229-232. 被引量:6
  • 8吕晓斌,兰黔章,朱自强.求解Euler方程的区域分解方法与并行算法[J].计算物理,2000,17(4):360-366. 被引量:4

二级参考文献9

  • 1孙家昶,网络并行计算与分布式编程环境,1996年
  • 2朱自强,航空学报,1991年,12卷,10期
  • 3Wang Z J,J Comput Phys,1990年,122期,96页
  • 4Pothen A, Simon H, Liou K P. Partition sparse matrices with eigenvector of graphs[J]. SIAM J Matrix Anal Appl, 1990,11(2): 430-452.
  • 5Chan T F, Ciarlet P, Szeto W K. On the optimality of the median cut spectral bisection method[J]. SIAM J Sci Comput, 1997, 18(3): 943-948.
  • 6Greenhough C, Fowler R F. Partition methods for unstructured finite element meshes[R]. Report RAL-94-092, Rutherford Appleton Laboratory, 1994.
  • 7Morgan K, Weatherill N P, Hassan O, et al. Parallel processing for large scale aerospace engineering simulations[A]. Parallel Computational Fluid Dynamics, Recent Developments and Advances Using Parallel Computers[C]. Holland: Elsevier Science B V, 1998.
  • 8Parlett B N. The symmetric eigenvalue problem[M]. New Jersey, Englewood Cliffs: Prentice Hall, 1980: 55-58.
  • 9Mavriplis D J, Jameson A. Multigrid solution of the 2-D Euler equations on unstructured triangular meshes[R]. AIAA Paper 87-0353.1987.

共引文献8

同被引文献22

  • 1王刚,孙迎丹,叶正寅.无网格算法在多段翼型流动计算中的应用[J].应用力学学报,2004,21(3):63-66. 被引量:6
  • 2CHANG S C. The method of space-time conservation element and solution element-A new approach for solving the Navier- Stokes and Euler equations [ J ]. Journal of Computational Physics, 1995,119 : 295-324.
  • 3CHANG S C, WANG X Y and CHOW C Y. The space-time conservation element and solution element method : A new high resolution and genuinely multi-dlmensional paradigm for solving conservation laws [ J]. Journal of Computational Physics, 1999,156:89-136.
  • 4WANG X Y and CHANG S C. A 2D nonsplitting unstructured triangular mesh Euler solver based on the space-time conservation element and solution element method [ J ]. CFD Journal, 1999,8:309-325.
  • 5ZHANG Z C, YU S T. A generalized space-time CE/SE method for the Euler equations on quadrilateral and hexago- nal meshes [R] .AIAA paper 2001-2592.
  • 6HIMANSU A,JORGENSON P C E,WANG X Y and CHANG S C. Parallel CE/SE computations via domain decomposition [ A]. Proceedings of the fast international conference on computational fluid dynamics[ C ]. July 9-14,2000, Kyoto, Japan.
  • 7KARYPIS G and KYNAR V. Multilevel K-way partitioning scheme for irregular graphs[J]. Journal of parallel and distributed computing, 1998,48( 1 ) :96-129.
  • 8CHANG S C. HIMANSU A,Y LOH C,WANG X Y and YU S T. Robust and simple non-reflecting boundary conditions for the Euler equations-A new approach based on the space-time CE/SE method[ R]. NASA/TM-2003-212495.
  • 9刘海涛,徐建中.求解Euler方程的空间—时间守恒格式[J].工程热物理学报,1997,18(3):294-299. 被引量:8
  • 10Lohner Rainald. A parallel advancing front grid generation scheme [J]. International Journal for Numerical Methods in Engineering,2001,51 (6) :663- 678.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部