期刊文献+

非傍轴平顶高斯光束M^2因子两种定义的比较研究 被引量:5

A Comparative Study on Two Definitions of the M^2 Factor of Nonparaxial Flattened Gaussian Beams
下载PDF
导出
摘要 基于功率密度的二阶矩方法,推导出了非傍轴平顶高斯(FG)光束束宽和远场发散角的解析表达式·研究表明,当w0/λ→0时,远场发散角趋于渐近值θmax=63.435°,与阶数无关·使用非傍轴高斯光束代替傍轴高斯光束作为理想光束,研究了非傍轴FG光束的M2因子,并与传统定义的M2因子作了比较·在非傍轴范畴,非傍轴FG光束的M2因子不仅与阶数N有关,而且与w0/λ有关·按照定义,当w0/λ→0时,非傍轴FG光束的M2因子不等于0,对阶数N=1,2,3时,M2因子分别趋于0.913,0.882和0.886·当N→∞时,M2因子取最小值M2min=0.816· Based on the second-order moment of the power density, the explicit expressions for the beam width and far-field divergence angle of nonparaxial flattened Gaussian (FG) beams are derived. It is found that as ω0/λ(waist width-to-wavelength ratio)→0, the far-field divergence angle approaches an asymptotic value of θmax=63.435°,indenpent of the beam order. Then, the nonparaxial Gaussian beam instead of the paraxial one is chosen as the ideal beam, the M^2 factor of nonparaxial FG beams is studied and compared with the conventional definition of the M^2 factor. In the nonparaxial regime, the M^2 factor of nonparaxial FG beams depends not only on the beam order, but also on ω0/λ. According to our definition, as ω0/λ→0, the M^2 factor of nonparaxial FG beams does not equal to zero, but approaches 0.913, 0. 882 and 0. 886 for the beam orders N =1, 2, 3, respectively. In particular, for N→∞ the M^2 factor takes its minimum M^2min =0.816.
出处 《光子学报》 EI CAS CSCD 北大核心 2006年第3期431-434,共4页 Acta Photonica Sinica
基金 国家高技术基金资助项目(A823070)
关键词 非傍轴平顶高斯光束 M^2因子 功率密度 Nonparaxial Flattened Gaussian (FG) beam M^2 factor Power density
  • 相关文献

参考文献4

二级参考文献26

  • 1[1]Nikolajeff F,Replication of continuous-relief diffractive optical elements by conventional compact disc injection-molding tecgniques Applied Optics,1997,36(20)4655~4659
  • 2[2]Jean-Luc,Nogues,R,Howell R L,Fabrication of pure silica micro-optics by sol-gel processing.Proc SPIE 1995,1751:214~224
  • 3[3]Nussbaum P.Simple technique for replication of micro-optical elements.Opt Eng,1998,37(6):1804~1808
  • 4[4]Daly D J Ferguson R.Replication of optical components using a silicon rubber intermediatereplica. Proc SPIE,1997, 3099:83~88
  • 5Bespolov V I, Talanov V L Filamentary structure of light beams in nonlinear liquids. JETP Lett, 1966,3(12) : 307 -310.
  • 6Liou L W, Cao X D, Mckinstrie C J, et al. Spatiotemporal instabilities in dispersive nonlinear media. Phy Rev ( A ),1992,46 (7) :4202 - 4208.
  • 7Feit M D, Fleck J A, Jr. Beam nonparaxiality, filament formation, and beam breakup in the self-focusing of optical beams. J Opt Soc Am(B), 1988,5(3) : 633 -640.
  • 8Akhmediev N, Ankiewicz A, Soto-Crespo J M. Does the nonlinear Schrodinger equation correctly describe beam propagation. Opt Lett, 1993,18 ( 6 ) :411 - 413.
  • 9Fibich G, Papanicolaou G C. Self-focusing in the presence of small time dispersion and nonparaxiality. Opt Lett, 1997,22(18) : 1379 - 1381.
  • 10Sheppard A P, Haelterman M. Nonparaxiality stabilizes three-dimensional soliton beams in Kerr media. Opt Lea,1998,23(23) : 1820 - 1822.

共引文献72

同被引文献48

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部