期刊文献+

一种求解大型稀疏对称矩阵(极端)特征值问题的有效算法

AN EFFECTIVE ALGORITHM FOR SOLVING (THE LARGEST OR LOWEST) EIGENPROBLEMS OF LARGE SPARSE SYMMETRIC MATRICES
下载PDF
导出
摘要 提出一种求解大型稀疏对称矩阵几个最大(最小)特征值和相应特征向量的迭代块DL(即DavidsonLanczos)算法并且讨论了迭代块DL算法的收敛率 An iterative block DL (i.e. Davidson Lanczos) algorithm is presented for computing a few of the largest (or lowest) eigenvalues and corresponding eigenvectors of very large sparse symmetric matrices. It′s convergence rate is also discussed. it overcomes the disadvantages of the DL method which cann′t find multiple or clustered eigenvalues, and the convergence speed of the mesent method is far faster than the DL method. Numerical results are compared whith those by the DL algorithm in a few experiments which exhibit a sharp superiority of the new approach.
作者 杜玉越
出处 《计算物理》 CSCD 北大核心 1996年第3期359-365,共7页 Chinese Journal of Computational Physics
关键词 对称矩阵 特征值 特征向量 稀疏矩阵 Symmetric matrix eigenvalue and eigenvector, DL algorithm iterative block DL algorithm.
  • 相关文献

参考文献1

  • 1杜玉越,南京航空航天大学学报,1991年,23卷,4期,117页

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部