摘要
提出一种求解大型稀疏对称矩阵几个最大(最小)特征值和相应特征向量的迭代块DL(即DavidsonLanczos)算法并且讨论了迭代块DL算法的收敛率
An iterative block DL (i.e. Davidson Lanczos) algorithm is presented for computing a few of the largest (or lowest) eigenvalues and corresponding eigenvectors of very large sparse symmetric matrices. It′s convergence rate is also discussed. it overcomes the disadvantages of the DL method which cann′t find multiple or clustered eigenvalues, and the convergence speed of the mesent method is far faster than the DL method. Numerical results are compared whith those by the DL algorithm in a few experiments which exhibit a sharp superiority of the new approach.
出处
《计算物理》
CSCD
北大核心
1996年第3期359-365,共7页
Chinese Journal of Computational Physics
关键词
对称矩阵
特征值
特征向量
稀疏矩阵
Symmetric matrix
eigenvalue and eigenvector, DL algorithm
iterative block DL algorithm.