期刊文献+

基于K-means聚类算法的分析及应用 被引量:22

Analyse and Application Based on K-means Clustering Algorithm
下载PDF
导出
摘要 聚类分析能作为一个独立的工具来获得数据分布的情况,观察每一个簇的特点,集中对特定的某些簇作进一步的分析;本文主要介绍了传统聚类算法及其局限性,然后对直接K-means算法进行分析改进,着重分析了该算法的思想体系以及它的优缺点,针对它的缺点之一提出了一种基于距离的改进策略,并将该改进策略应用到对学生成绩的分析中,实验目的是应用该算法将学生划分为合理的簇(或类)以及对聚类结果进行分析,总之实验表明了该算法的灵活性以及在此应用中的适用性. Clustering analyse as an independent fool can get the data distribution,observe every clustering characteristic and focus on the further analyse to specifical cluster. This paper mainly introduces the traditional clustering algorithm and its disadvantages. It also analyses and improves the direct K-means algorithm. It emphasizes the algorithm's thinking system and its advantages and disadvantages. Overcoming one of the disadvantages, it can put forward to improve the tactic based on the distance. This tactic can be used to analyse the student scores. The experimental intention is that students are divided into rational cluster. In a word,the experiment indicate the algorithm's agility and validity in its application.
出处 《西安工业学院学报》 2006年第1期45-48,共4页 Journal of Xi'an Institute of Technology
关键词 数据挖掘 划分方法 聚类 K—means data mining partitioning method clustering K-means
  • 相关文献

参考文献4

  • 1[美]格罗思R.Data mining building competitive advantage[M].侯迪,译.西安:西安交通大学出版社,2001.
  • 2Ester M,Kriegel H P,Sander J. A density-based algorithm for discovering clusters in large spatial databases with noise[J]. Proc 2nd Int Conf on knowledge discovery and Data Mining. Portland, 1999 ,20 : 226.
  • 3王实,高文.数据挖掘中的聚类方法[J].计算机科学,2000,27(4):42-45. 被引量:88
  • 4荣秋生,颜君彪,郭国强.基于DBSCAN聚类算法的研究与实现[J].计算机应用,2004,24(4):45-46. 被引量:77

二级参考文献4

  • 1[1]Han JW,Kamber M. Data Mining:Concepts and Techniques[D]. Simon Fraser University,2000.
  • 2[2]Alsabti K,Ranka S,Singh V.An efficient k-means clustering algorithm[A]. IPPS-98,Proceedings of the First Workshop on High Performance Date Mining[C]. Orlando,Florida,USA,1998.
  • 3[3]Ester M,Kriegel HP,Sander J,et al. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[A]. Proceedings 2nd International Conference on Knowledge Discovery and Data Mining[C]. Portland,OR,1996. 226-231.
  • 4[4]Wang HX,Zaniolo C. Database System Extensions for Decision Support:the AXL Approach[A]. ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery[C]. 2000. 11-20.

共引文献162

同被引文献157

引证文献22

二级引证文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部