期刊文献+

移动机器人自主越障反应控制行为组合方法 被引量:1

A Behavior Combination in Autonomous Negotiation Reactive Control for Mobile Robot
下载PDF
导出
摘要 介绍了关节式移动机器人运动系统的元(基本)行为,提出了用模糊逻辑组合方法将原子行为(动作)组合生成高层复杂行为的行为模糊逻辑组合方法;描述了模糊逻辑组合方法组合生成的移动机器人自主越障行为.通过凸台、凹坑和楼梯等典型障碍的越障实验证明,该方法所生成的行为控制自主越障动作协调性好,具有较高的实时性、快速性和可靠性.解决了关节式移动机器人在城区和建筑内运动的越障稳定性和移动性问题. This paper presented the meta-behavior (basic behavior) of a mobile robot motion system, proposed a fuzzy logical behavior combination method which combines meta-behavior to create high level complex behavior using fuzzy logic principle; and described the behavior of automotive obstacles negotiation using the fuzzy logical behavior combination method to create the negotiate action for mobile robot. The experiment of negotiating typical obstacles, such as convex, concave obstacles and stairs, shows the behaviors created by this method control robot of negotiating obstacles have better coordination, higher performance of real-time, speediness and reliability. It can resolve the problems of negotiation stability and mobility for articulated mobile robot in the city zone and building.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2006年第3期451-455,共5页 Journal of Shanghai Jiaotong University
关键词 关节式移动机器人 自主越障 行为组合 模糊逻辑组合方法 articulated mobile robot autonomous negotiation behavior eombination fuzzy logic combination method
  • 相关文献

参考文献7

  • 1Maja J.Behavior-based robotics as a tool for synthesis of artificial behavior and analysis of natural behavior[J].Trends in Cognitive Science,1998,2(3):82-87.
  • 2Wettergreen D.Robotic walking in natural terrain-gait planning and behavior-based control for staticallystable walking robots[D].Pittsburgh:The Robotics Institute Carnegie Mellon University,1995.
  • 3Brooks R.A robot that walk:Emergent behavior form a carefully evolved network[J].Neural Computation,1989,1(2):253-262.
  • 4Godjevac J,Steele N.Neuro-fuzzy control of a mobile robot[J].Neurocomputing,1999,28:127-143.
  • 5Pirjanin P.Multiple objective action selection and behavior fusion voting[D].Denmark:Institute of Electronic Systems,Aalborg University,1998.
  • 6Yang S,Meng M.An efficient neural network approach to dynamic robot motion planning[J].Neural Networks,2000,13(2):143-148.
  • 7Lzumi K,Watanabe K.Fuzzy behavior-based control trained by module learning to acquire the adaptive behaviors of mobile robots[J].Mathematics and Computers in Simulation,2000,51:233-243.

同被引文献5

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部