期刊文献+

基于模态空间及空间压缩理论的粒子群算法在输电网络规划中的应用 被引量:1

The Particle Swarm Optimization Based on Model Space and Space Compression Theory and Its Application in Power Network Expansion Planning
下载PDF
导出
摘要 提出了模态空间及空间压缩理论,将每次搜索到的一个满足N-1原则的网络定义为一个模态,并定义模态空间.将该理论应用于粒子群算法(PSO),通过防止重复搜索已搜索的模态空间对整个可行空间进行压缩,提高了算法的全局搜索效率,并提出了模态结构变异法,为算法提供了跳出局部最优的途径.通过算例与普通PSO算法的分析比较,证明了模态理论的正确性和应用模态理论的PSO算法具有全局、快速的搜索性能. A model space and space compression theory was presented. The theory defines an N-1 security network as a model, and then defines a model space according to the given model. This theory can prevent particle from searching in the found areas and improve its search efficiency. A model structure mutation method is also put forward, which can make particle jump out of the local optimum. The comparison of the performance between basic particle swarm optimization (PSO) and model based PSO (MPSO) demonstrate these methods are correct and efficient.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2006年第3期543-547,552,共6页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金资助(50177017)项目 上海市重点科技攻关资助(041612012) 国家电网公司资助课题(SGZL[2004]151)
关键词 输电网络规划 粒子群算法 模态 模态空间 模态结构变异 power network expansion planning particle swarm optimization (PSO) model model space model structure mutation
  • 相关文献

参考文献12

  • 1Kennedy J,Eberhart R C.Particle swarmoptimization[A].Proceedings of IEEE International Conference on NeuralNetworks[C].Piscataway,NJ:IEEE Press,1995:1942-1948.
  • 2Goldberg D E.Genetic algorithm in search,optimization,and machinelearning[M].MA:Addison-Wesley Publishing Company Inc,1985.
  • 3Boeringer D W,Werner D H.A comparison of particle swarm optimization and geneticalgorithms for a phased array synthesis problem[A].Proceedings of the IEEE SocietyInternational Conference on Antennas and Propagation[C].Indianapolis,Indiana:IEEEPress,2003:181-184.
  • 4余欣梅,李妍,熊信艮,吴耀武.基于PSO考虑谐波影响的补偿电容器优化配置[J].中国电机工程学报,2003,23(2):26-30. 被引量:72
  • 5Kennedy J.Small worlds and mega-minds:Effects of neighborhood topology on particleswarm performance[A].Proc IEEE Congress on Evolutionary Computation[C].Piscataway,NJ:IEEEPress,1999:1931-1938.
  • 6Shi Y,Eberhart R C.A modified swarm optimizer[A].IEEE International Conference ofEvolutionary Computation[C].Anchorage,Alaska:IEEE Press,1998:69-73.
  • 7Lovbjerg M,Rasmussen T K,Krink T.Hybrid particle swarm optimizer with breeding andsubpopulations[A].Proc of the 3rd Genetic and Evolutionary Computation Conference[C].SanFrancisco:Morgan Kaufmann,2001:469-476.
  • 8胡家声,郭创新,曹一家.一种适合于电力系统机组组合问题的混合粒子群优化算法[J].中国电机工程学报,2004,24(4):24-28. 被引量:132
  • 9Higashi N,Iba H.Particle swarm optimization with gaussian mutation[A].Proceedings ofthe 2003 IEEE on Swarm Intelligence Symposium[C].Indianapolis,Indiana:IEEEPress,2003:72-79.
  • 10叶在福,单渊达.基于边界搜索策略的遗传算法在电网扩展规划中的应用[J].中国电机工程学报,2000,20(11):41-45. 被引量:30

二级参考文献29

共引文献252

同被引文献16

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部