摘要
证明了如果一个亚纯函数f满足f(n)(z)-a(f(z))n+1≠b,其中,n∈N,n≥1,a(≠0)和b是两个判别的有穷复数,f的极点重级至少为n+2,f没有零点,或者零点的重级至少为n+3,则f是常数.同时也得到了相应的正规定则.
Let f(z) be a meromorphic function, the poles of f(z) are of multiplicity at least n + 2 ,f(z) has no zero or the zero of multiplicity at least n+3, n∈N, n≥ 1,a (≠0) and b are two finite complex numbers,if f(z) sarisfies.
f^(n)(z) -a(f(z) )^n+1 ≠b
then f(z) must be a constant. And the corresponding normality is proved.
出处
《西华师范大学学报(自然科学版)》
2006年第1期71-73,共3页
Journal of China West Normal University(Natural Sciences)
基金
西华师范大学科研启动基金资助项目(2005)
关键词
亚纯函数
性质
正规定则
meromorphic function
property
normal criterion