A-调和函数A_r^(λ_3)(λ_1,λ_2,Ω)的加权Poincaré不等式(英文)
A_r^(λ_3)(λ_1,λ_2,Ω)-Weighted Poincaré Inequality for A-Harmonic Functions
摘要
获得了A调查和函数λλr3(λ1,λ2,Ω)的一种局部加权Poincar啨不等式.该不等式可用来估计各种不同形式的积分.
This paper derives a kind of local Ar^λ3(λ1 ,λ2 ,Ω) - weighted Poincaré inequality [or A - harmonic functions and this inequality can be used to estimate the integrals for them.
出处
《湖州师范学院学报》
2006年第1期1-3,共3页
Journal of Huzhou University
基金
ResearchSupportedbyNSFC(10471149,10471039)
MathematicsTianYuanYouthFoundation(A0324610)
DoctoralFoundationofHebeiProvince(B2004103)
参考文献12
-
1Ding S,Ling Y.Weighted Norm Inequalities for Conjugate A-harmonic Tensors[J].J Math Anal Appl,1996,203:279~289.
-
2Ding S.New Weighted Integral Inequalities for Differential Forms in Some Domains[J].Pacific J Math,2000,194:43~56.
-
3Ding S,Shi P.Weighted Poincaré-type Inequalities for Differential Forms in Ls (μ)-averaging Domains[J].J Math Anal Appl,1998,227:200~215.
-
4Bao G.Ar(λ)-weighted Integral Inequalities for A-harmonic Tensors[J].J Math Anal Appl,2000,247:466~477.
-
5Heinonen J,Kilpelainen T,Martio O.Nonlinear Potential Theory of Degenerate Elliptic Equations[M].Oxford:Clarendon Press,1993.174~189.
-
6Ding S,Sylvester D.Weak Reverse Hlder Inequalities and Imbedding Inequalities for Solutions to the A-harmonic Equation[J].Nonlinear Analysis,2002,51(5):783~800.
-
7Garnett J B.Bounded Analytic Function[M].New York:Academic Press,1970.215~264.
-
8Liu B.Ar(λ)-weighted Caccioppoli-type and Poincaré-type Inequalities for A-harmonic Tensors[J].Internat J Math Sci,2002,31(2):115~122.
-
9Ding S.Weighted Hardy-Littlewood Inequality for A-harmonic Tensors[J].Proc Amer Math Soc,1997,125,1727~1735.
-
10Ding S.Parametric Weighted Integral Inequalities for A-harmonic Tensors[J].Zeischrift Fur Analysis und Ihre Anwendungen (Journal of Analysis and Its Applications),2001,20:691~708.
-
1张俊祖,葛键.Hider不等式的逆向形式[J].西安联合大学学报,2003,6(2):38-41.
-
2高红亚,江宁.A-调和函数高阶可积性的简单证明[J].河北大学学报(自然科学版),2009,29(1):8-9. 被引量:2
-
3刘琳,高红亚.A-调和函数的加权Caccioppoli型不等式[J].河北大学学报(自然科学版),2004,24(5):460-463.
-
4郑学良,郑神州.自然增长下非线性退化椭圆方程的优化Hlder连续指数[J].数学学报(中文版),2008,51(4):735-748.
-
5周跃进,陈桂景,王蕊.仅自变量可重复观测的变系数线性结构型EV模型的参数估计[J].统计与决策,2010,26(5):14-16.
-
6贺丹,金明浩.共轭A-调和张量局部加权估计式[J].赤峰学院学报(自然科学版),2013,29(6):1-3.
-
7丁树森,盖云英.某些域上的A_r加权Poincaré型微分形式不等式[J].数学学报(中文版),2003,46(1):23-28. 被引量:1
-
8田茂茜.分数次Orlicz极大算子在齐型空间中的局部加权端点估计[J].纯粹数学与应用数学,2011,27(5):622-627. 被引量:1
-
9高红亚,侯兰茹.共轭A-调和张量的双权积分不等式[J].数学物理学报(A辑),2008,28(2):341-348. 被引量:1
-
10田茂再,吴喜之.广义线性模型中一类推广的拟似然估计与异方差性诊断检验(英文)[J].数学理论与应用,2002,22(3):5-14.