期刊文献+

基于无味卡尔曼滤波的多雷达方位配准算法 被引量:5

Algorithm for Multi-Radar Azimuth Registration Based on Unscented Kalman Filter
下载PDF
导出
摘要 将无味卡尔曼滤波(U nscen ted K a lm an filter,UKF)应用于雷达配准,提出一种新的多雷达方位配准算法。在该算法中,目标的运动状态和方位误差由选定的采样点来近似,在每个更新过程中,采样点随着状态方程传播并随非线性测量方程变换,得到目标的运动状态和方位误差的均值,避免了对非线性方程的线性化,且具有较高的计算精度。与传统的扩展卡尔曼滤波(Ex tended K a lm an filter,EKF)方法进行了仿真比较,结果表明UKF方法能有效地克服非线性跟踪问题中很容易出现的滤波发散问题,且估计精度高于UKF方法。 The unscented Kalman filter (UKF) is applied to the radar registration and a new algorithm for the multi-radar azimuth registration is presented. In the algorithm, the target state and the biased error estimates are approximated by specified sample points. During the each update process, sample points are propagated by the state equation and transformed by the nonlinear measurement equation. From these sample points, the posterior mean and covariance of the target state, and the biased error are accurately computed to the second order. The lin earization of the nonlinear equations for the extended Kalman filter(EKF)is not needed. Simulation result shows that in the radar standard EKF in the accuracy and the registration problem the UKF divergence performance. method outperforms the
出处 《数据采集与处理》 CSCD 北大核心 2006年第1期29-33,共5页 Journal of Data Acquisition and Processing
基金 国防预研基金(51421040103JB4902)资助项目
关键词 多雷达 方位配准 无味卡尔曼滤波 系统误差 multi-radar azimuth registration unscented Kalman filter system error
  • 相关文献

参考文献13

  • 1Nabaa N,Bishop R H.Solution to a multisensor tracking problem with sensor registration error[J].IEEE Transactions on Aerospace and Electronic Systems,1999,35(1):354-363.
  • 2Cowley D C,Shafai B.Registration in multi-sensor data fusion and tracking[C]//Proceedings of the American Control Conference.Piscataway NJ,USA:IEEE,1993:875-879.
  • 3Zhou Yifeng,Leung H,Chan K C C.A two-step extended Kalman filter fusion approach for misaligned sensors[C]// Proc of the Int Conf on Multisource-Multisensor Information Fusion.Las Vegas:CSREA Press,1998:54-58.
  • 4Dhar S.Application of a recursive method for registration error correction in tracking with multiple sensors[C]//Proceedings of the American Control Conference.Piscataway NJ,USA:IEEE,1993:869-874.
  • 5Leung H,Blanchette M,Gault K.Comparison of registration error correction techniques for air surveillance radar network[J].SPIE Proc Signal Data Processing Small Targets,1995,2561:498-508.
  • 6Conte J E,Helmick R E.Real-time bias estimation and alignment of two asynchronous sensors for track association and fusion[DB/CD].ADA296043,1995.
  • 7Helmick R E,Rice T R.Removal of alignment errors in an integrated system of two 3-D sensors[J].IEEE Transactions on Aerospace and Electronic Systems,1993,29(4):1333-1343.
  • 8Leung H,Blanchette M.A least squares fusion of multiple radar data[C]//Proceedings of Radar 1994.Paris:[s,n],1994:364-369.
  • 9Kousuge Y,Okada T.Bias estimation of two 3-dimensonal radars using Kalman filter[C]//The 4th Int Workshop on Advanced Motion Control.Japan:[s,n],1996:377-382.
  • 10杨宏文,郁文贤,胡卫东,吴建辉.基于可测度分析的雷达系统误差估计[J].国防科技大学学报,1999,21(5):53-56. 被引量:6

二级参考文献8

共引文献5

同被引文献70

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部