摘要
采用胶体模板法并通过简单可控的化学填充工艺制备了三维锗光子晶体;以单分散二氧化硅小球的蛋白石结构为模板,由氯化亚锗与丙烯酸化合制备得到3-三氯锗丙酸(Cl3GeCH2CH2COOH)白色粉末,以三氯锗丙酸的乙醇溶液作为锗源先驱体,低温水解得到β-羧乙基锗倍半氧化物,在600~660℃经H2还原后形成锗,由2%HF化学浸蚀消除模板.对终产物进行X射线衍射分析。结果表明:产物为多晶锗。通过扫描电子显微镜对终产物的形貌进行观察的结果表明:包裹有空气的锗壳球有序阵列已经形成。将先驱体浓度为0.6mol/L的溶液填入模板空隙后。壳层表面可以获得较为光滑致密的锗壳。
Three-dimensional photonic crystals (PCs) were prepared by colloidal template method through a simple controllable chemical filling technique. The synthetic opal made from monodisperse silica colloidal spheres was used as a template, and a white powder of 3-trichlorogermanium propanoic acid (Cl3GeCH2 CH2 COOH )was synthesized by combination reaction between germanium( Ⅱ )chloride and crylic acid. The Cl3 GeCH2 CH2 COOH solution in ethanol as the germanium precursor was infiltrated into the opal template voids, which was hydrolyzed to form carbcxyethyl germanium sesquioxide and reduced by H2 at 600~660℃ to form germanium, and then the template was removed chemically by being etched in 2% HF solution. The X-ray diffraction result shows that the final product is the polycrystalline germanium phase. The surface morphology of the final product observed by scanning electron microscopy (SEM) shows that an ordered array composed of air spheres coated with germanium shells was formed. The SEM photographs of the shell surfaces indicate that a smooth and compact shell can be formed when the concentration of the precursor is 0.6 mol/L.
出处
《硅酸盐学报》
EI
CAS
CSCD
北大核心
2006年第3期358-361,共4页
Journal of The Chinese Ceramic Society
关键词
锗光子晶体
胶体晶体
模板
核壳结构
germanium photonic crystals
colloidal crystals
templates
core-shell structure