摘要
提出了应用支持向量机(LS-SVM)实现传感器非线性动态补偿方法.LS-SVM的训练过程遵循的是结构风险最小化原则,而不是通常神经网络的经验误差最小化,可获得更好的泛化性能,不易发生局部最优及过拟合现象,因此可弥补应用人工神经网络进行传感器非线性动态补偿的缺陷.通过实例验证了该方法的可行性,结果表明,即使当传感器动态模型存在严重非线性,且有测量噪声存在,该方法也仍然有效.
The least squares support vector machine (LS--SVM) is proposed for nonlinear dynamic compensation of sensors based on the structural risk minimization principle rather than the empirical error minimization principle commonly implemented in the neural networks, the LS-SVM can achieve higher generalization performance, the local minima and over fitting are unlikely to occur. Therefore, the LS-SVM can overcome the shortcomings of neural networks in nonlinear dynamic compensation of sensors. The feasibility of the method is demonstrated by applying it to a practical example. The experimental results show that the method is still effective even if the sensor's dynamic model is of high nonlinearity and there exists additive measuring noise.
出处
《测试技术学报》
2006年第2期184-188,共5页
Journal of Test and Measurement Technology
基金
浙江省自然科学基金资助项目(602145)
关键词
传感器
非线性
动态补偿
最小二乘支持向量机
sensor
nonlinearity
dynamic compensation
least squares support vector machines