期刊文献+

基于支持向量机的传感器非线性动态补偿方法 被引量:6

Nonlinear Dynamic Compensation of Sensors Based on Least Squares Support Vector Machines
下载PDF
导出
摘要 提出了应用支持向量机(LS-SVM)实现传感器非线性动态补偿方法.LS-SVM的训练过程遵循的是结构风险最小化原则,而不是通常神经网络的经验误差最小化,可获得更好的泛化性能,不易发生局部最优及过拟合现象,因此可弥补应用人工神经网络进行传感器非线性动态补偿的缺陷.通过实例验证了该方法的可行性,结果表明,即使当传感器动态模型存在严重非线性,且有测量噪声存在,该方法也仍然有效. The least squares support vector machine (LS--SVM) is proposed for nonlinear dynamic compensation of sensors based on the structural risk minimization principle rather than the empirical error minimization principle commonly implemented in the neural networks, the LS-SVM can achieve higher generalization performance, the local minima and over fitting are unlikely to occur. Therefore, the LS-SVM can overcome the shortcomings of neural networks in nonlinear dynamic compensation of sensors. The feasibility of the method is demonstrated by applying it to a practical example. The experimental results show that the method is still effective even if the sensor's dynamic model is of high nonlinearity and there exists additive measuring noise.
出处 《测试技术学报》 2006年第2期184-188,共5页 Journal of Test and Measurement Technology
基金 浙江省自然科学基金资助项目(602145)
关键词 传感器 非线性 动态补偿 最小二乘支持向量机 sensor nonlinearity dynamic compensation least squares support vector machines
  • 相关文献

参考文献7

二级参考文献10

  • 1Xu kejun,Chen rongbao,Zhang chongwei.Common Techniques in Automatic measurement and Instrument[M].Beijing:Tsing hua University Press,2000,48-51.
  • 2Narendra K S,Parthasarathy K.Identificationand Control of Dynamical Systems using Neural Networks[J].IEEE Trans.on Neural Networks,1990,1(1):4-27.
  • 3Ku C C,Lee K Y.Diagonal Recurrent Neural Network for Dynamic Systems Control[J].IEEE Trans on NN,1995,6(1):144-155.
  • 4Ljiung L,Soderstrom T.Theory and Practice of Recursive Identification[M].London:The MIT Press,1983,141-149.
  • 5J.J.Anaya, L.G. Ullate, C.Fritsch. A method for real-time deconvolution. IEEE Trans. Instrum. Meas., 1992,41(3):413-419.
  • 6T.Daboczi.Uncertainty of signal reconstruction in the case of jittery and noisy measurement. IEEE Trans. Instrum. Meas., 1998,47(2):1062-1066.
  • 7J.E.Brignell. Software techniques for sensor compensation. Sensors and Actuators, 1991,(A25-27):29-35.
  • 8W.J.Shi, J.E. Brignell. On-line optimization in sensor frequency response compensation. Sensors and Actuators. 1991, (A25-27):37-41.
  • 9S. Berling, G. Blaser, J. Bock, et al.. Signal conditioning for semiconductor gas sensors being used as detectors in gas-chromatographs and similar applications. Sensors and Actuators B 1998,52:15-22.
  • 10X.-Z.Dai, J. Liu, C. Feng, D. He. Neural network α th inverse system method for the control of nonlinear continuous systems. IEE Proc. Control Theory and Appl., 1998, 145:519-522.

共引文献41

同被引文献59

引证文献6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部