期刊文献+

基于DW分离模糊负荷模型的无功功率优化 被引量:1

Reactive Power Optimization Based on Fuzzy Load Model of the Dantzig-wolfe
下载PDF
导出
摘要 提出了一种大区域电网无功功率/电压最优化控制的数学模型,其目的是研究在当前时段内各负荷值的情况下使功率损耗最小.该模型运用模糊集理论,结合DW分离法,成功地解决了多目标优化中描述不确定性以及处理不同量纲相互矛盾的问题,另一方面降低了问题计算的复杂度.算例表明,该模型具有较强的适应性和通用性,在全局收敛性、算法复杂度及运算效率等方面显示了一定的优势,为系统在各负荷值条件下的性状提供了总的解答. For optimal control of reactive power/voltage in large-scale electric network, a novel mathemafic model of fuzzy load is presented. The objective is to minimize power losses considering various load condition at the current time interval. Combining fuzzy set theories with Wantzig-wolfe decomposition, all the problem such as the uncertainties described, the conflicting in different measures and the complexity of calculating are resolved. That this model not only has the stronger adaptability , the global optimization capability of escaping local optimum and the capability of reducing CPU time effectively, but also can provide a global solution for the system behavior under various load conditions is proved by the results of the numerical examples.
机构地区 邵阳学院
出处 《长沙电力学院学报(自然科学版)》 2006年第1期10-14,共5页 JOurnal of Changsha University of electric Power:Natural Science
关键词 无功功率优化 模糊负荷 DW分离 reactive power optimization fuzzy load dantzig-wolfe decomposition
  • 相关文献

参考文献8

二级参考文献15

  • 1邓佑满,张伯明,田田.虚拟负荷法及其在配电网络动态优化中的应用[J].中国电机工程学报,1996,16(4):241-244. 被引量:45
  • 2陈保林.最优化理论与算法(Theory and methods of optimization)[M].北京:清华大学出版社(Beijing:The Press of Qinghua University),1989..
  • 3[11]D.W.Hillis.Co-evolving parasites improve simulated evolution as an optimization procedure[C].Artificial Life Ⅱ,USA,California,1991,313-314.
  • 4[12]P.Husbands,E Mill.Simulated co-evolution as the mechanism for emergent planning and scheduling[C].Proceedings of the Fourth International Conference on Genetic Algorithms,USA,California,1991,264-270.
  • 5[13]M.A.Potter,K.A.De Jong.Cooperative coevohltion:an architechture for evolving coadapted subcomponents [J].Evolutionary Computation,2000,8(1):1-29.
  • 6[14]Haoyong Chen,Xifan Wang.Cooperative coevolutionary algorithm for unit commitment [J].IEEE Transaction on PWRS,2002,17(1):128-133.
  • 7[18]R.Paul Wiegand.An analysis of cooperative coevolutionary algorithms [D].Virginia,George Mason University,2003.
  • 8Wong Kitpo,IEEE Trans Power Systems,1998年,13卷,2期,301页
  • 9Yang P C,IEE Proc Gener Transm Distrib,1996年,143卷,4期,371页
  • 10Edwin Liu W H,IEEE Trans Power Systems,1996年,11卷,2期,639页

共引文献145

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部