期刊文献+

PRIS信息检索技术报告

PRIS Information Retrieval System Report
下载PDF
导出
摘要 建立索引、查询扩展和相似度计算等都是检索系统中的关键环节。Pills信息检索系统更侧重于构造简单有效的查询扩展算法。本报告介绍了北京邮电大学模式识别实验室参加2005年863信息检索测试的系统结构和具体方法。本报告分别介绍了预处理、分词、建立索引、查询扩展和相似度计算等部分。最后针对测试结果进行了分析。对正式评测的50个主题粜检索,获得的三项评价指标为:程序自动构造查询时,MAPm-0.1862,P@10=0.5180,R.Precision=0.2554;人工构造查询时,MAP=0.1862,P@10=0.5180,R-Precision=0.2554。 Index, query expansion and similarity computation are all the critical steps in information retrieval. More attention is paid to query expansion in constructing PRIS information retrieval system. The main content of this report is the introduction to the system which is designed by PRIS for 2005 863 information retrieval test. The structure of the system and the key means are introduced. And the result analysis is also presented. In the official evaluation on 50 topics, MAP 0. 1862, P@ 10 0. 5180, R-Precision 0. 2554 and MAP 0. 1862, P@ 10 0. 5180, R-Precision 0. 2554 are achieved with queries constructed automatically and artificially respectively.
出处 《中文信息学报》 CSCD 北大核心 2006年第B03期96-101,共6页 Journal of Chinese Information Processing
基金 国家自然科学基金资助项目(60475007) 教育部跨世纪人才基金 教育部重点科研项目资助(02029)
关键词 信息检索 索引 查询扩展 相似度计算 information retrieval index query expansion similarity computation
  • 相关文献

参考文献5

  • 1Scrgey Brin and Lawrence Page. The Anatomy of a Large-Scale Hypertextual Web Search Engine [J] . Computer Networks and ISDN Systems, 1998 , 30(2): 107-117.
  • 2Rieardo Baeza-Yates , Berthier Ribeiro-Neto. Modem Information Retrieval [M]. Addison Wesley Longman Publishing Co, 2000.
  • 3W. Fan, M. Luo, L. Wang, W. Xi, and E. A. Fox,Tuning before feedback: Combining ranking discovery and blind feedback for robust retrieval [A], In:the Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval[C]: ACM, 2004.
  • 4Ricardo Baeza-Yates Berthier Ribeiro-Neto,等著,王知津,贾福新,郑红军,等译.现代信息检索[M].机械工业出版社,2005.
  • 5宋玲丽,成颖,单启成.信息检索系统中的相关反馈技术[J].情报学报,2005,24(1):34-41. 被引量:7

二级参考文献36

  • 1Selberg E. W. Inormation Retrieval Advances using Relevance Feedback.http://www, selberg, org/homes/speed/papers/generals/generals. pdf.
  • 2Sahon G., Fox E.A. , Voorhess E. Advanced Feedback Methods in Information Retrieval. Journal of the American Society for Information Science, 1985,36(3) .200 - 210.
  • 3Mitra M., Buckley C., Singhal A. & Cardie C. An Analysis of Statistical and Syntactic Pharases. In RIAO' 97 : Computer-Assisted Information Searching on the Internet, 1997,200 - 214.
  • 4Aalbersberg J.J. Incremental Relevance Feedback. Proceedings of the 15^th annual international ACM S1GR1 conference on Research and development in information retrieval, 1992,11 - 22.
  • 5Spink A. Term Relevance Feedback and Query Expansion:Relation to Design. Proceedings of the 17^th annual international ACM S1G1R conference on Research and development in information retrieval, 1994,81 ~ 90.
  • 6Ruthven I. et al. Incorporating User Search Behavior into Relevance Feedback. Journal of the American Society for Information Science and Technology .2003,54(6) :529 - 549.
  • 7Vakkari P. Cognition and Changes of Search Terms and Tactics during Task Performance. Proceedings of R1AO Conference on Content- Based Multimedia Information Access,2001,894 - 907.
  • 8Efthimiadis N. User Choices: A New Yardstick for the Evaluation of Ranking Algorithms for Interactive Query Expansion.Information Processing and Management, 1995,31 (4) :605-620.
  • 9Haines D., Croft W. B. Relevance feedback and inference networks. Proceedings of the 16'h annual international ACM SIGI Rconference on Research na development in information retrieval,1993,2- 11.
  • 10Turtle H. R., Croft W. B. Inference Networks for Document Retrieval. Proceedings of the 13^th Annual International ACM SIGIR Conference of Research and Development in Information Retrieval, 1990,1-24.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部