期刊文献+

基于互补子空间线性判别分析的人脸识别 被引量:3

Linear Discriminant Analysis in Complementary Subspace for Face Recognition
下载PDF
导出
摘要 基于随机子空间,提出了一种用于人脸识别的互补子空间线性判别分析方法.与Fisherface和零空间线性判别分析相比,该方法同时在主元子空间和零空间中进行判别分析,并在特征层融合这两个子空间的判别特征.根据最适宜的零空间状态构建随机子空间,随机子空间的融合在决策层进行.多个人脸数据库上的实验结果表明,本算法能够有效地解决线性判别分析中的小样本规模问题. Based on random subspace, a complementary subspace linear discriminant analysis (LDA) approach is presented for face recognition. Compared with the Fisherface and the null space LDA which only perform the discriminant analysis in the principal and null subspaces respectively, the proposed method extracts discriminative information from the two subspaces simultaneously and combines the two parts discriminative features on the feature level. Furthermore, random subspace is generated under the most suitable situation for the null space and all random subspaces are integrated on the decision level. Experiments demonstrate that the proposed method can effectively solve the small sample size problem of LDA.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2006年第3期206-210,共5页 Transactions of Beijing Institute of Technology
基金 国家自然科学基金资助项目(60473049)
关键词 线性判别分析 随机子空间 互补子空间 人脸识别 linear discriminant analysis random subspace complementary subspace face recognition
  • 相关文献

参考文献12

  • 1Belhumer P N,Hespanha J P,Kriegman D J.Eigenfaces vs.Fisherfaces:recognition using class specfic linear projection[J].IEEE Transactions on Pattern Analysis and Machine Intelligent,1997,19(7):711-720.
  • 2Chen L,Liao H,Ko M,et al.A new lda-based face recognition system which can solve the small sample size problem[J].Journal of Pattern Recognition,2000,33(10):1713-1726.
  • 3Fukunnaga K.Introduction to statistical pattern recognition[M].2nd ed.Washington D C:Academic Press,1991.
  • 4Liu C J,Wechsler H.Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition[J].IEEE Transactions on Image Processing,2002,11(4):467-476.
  • 5Liu W,Wang Y H,Li S Z,et al.Null space-based kernel fisher discriminant analysis for face recognition[C]∥Proceedings of International Conference on Automatic Face and Gesture Recognition (FG).[S.l.]:IEEE,2004:369-375.
  • 6Li S Z,Hou X W,Zhang H J.Learning spatially localized,part-based representation[J].Proceedings of Computer Vision and Pattern Recognition,2001(1):207-212.
  • 7Kim K C,Kim D J,Bang S Y.Face recognition using lda mixture model[J].Proceedings of International Conference on Pattern Recognition,2002,2(7):486-489.
  • 8Moghaddam B,Pentland A.A Probabilistic visual learning for object representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligent,1997,19(7):775-779.
  • 9Wang X G,Tang X O.Random sampling lda for face recognition[C]∥Proceedings of Computer Vision and Pattern Recognition.Washington:IEEE,2004:259-265.
  • 10Messer K,Matas J,Kittler J,et al.XM2VTSDB:the extended M2VTS database[C]∥Proceedings of Internatinal Conference on Audio-and Video-Based Person Authentication.Washington:IEEE,1999:72-77.

同被引文献35

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部