期刊文献+

基于红-黑小波变换的图像去噪算法 被引量:2

Image Denoising Algorithm Based on The Red-Black Wavelet Transform
下载PDF
导出
摘要 在红-黑小波变换的基础上,提出了一种新的阈值方法对小波系数进行萎缩以实现图像的去噪.该阈值方法结合了仿射阈值和非负Garrote阈值的优点,能在保留图像细节的基础上实现更好的去噪效果.通过仿真试验,对不同尺度下的阈值提出了一组最多适用到8级红-黑小波变换的阈值权重.结果证明,结合所提出的阈值方法和这一组阈值权重能实现较为理想的去噪效果. Based on the red-black wavelet transform, a new thresholding for image denoising is proposed. Combing the characteristics of affine and non-negative thresholding, this method can keep a better balance between image details and it's denoising. After simulation on a multitude of images, eight different thresholding weights applied to as many as eight levels of red-black wavetlet transforms have been proposed. Simulaton proves that by combining the thresholding and the eight weights better results can be achieved.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2006年第3期264-267,共4页 Transactions of Beijing Institute of Technology
基金 国家"八六三"计划项目(2003AA131150)
关键词 红-黑小波 仿射阈值 非负Garrote阈值 图像去噪 red-black wavelet affine thresholding non-negative garrote thresholding image denoising
  • 相关文献

参考文献10

  • 1Sweldens W.The lifting scheme:a custom-design construction of biorthogonal wavelets[J].Applied and Computational Harmonic Analysis,1996,3:186-200.
  • 2Kovacvic J,Sweldens W.Wavelet families of increasing order in arbitrary dimension[J].IEEE Transactions on Image Processing,2000,9(3):480-496.
  • 3Uytterhoeven G,Bultheel A.The red-black wavelet transform[R].Belgium:Katholieke Universiteit Leuven,1997.
  • 4Uytterhoeven G,Bultheel A.The red-black wavelet transform and the lifting scheme[R].Belgium:Katholieke Universiteit Leuven,2000.
  • 5Claypoole R L,Baraniuk R G.Flexible wavelet transforms using lifting[C]∥Society of Exploration Geophysicists 68th Annual Meeting.New Orleans:[s.n.],1998:141-145.
  • 6Vrankic M,Egiazarian K,Gotchev A.Image denoising by combined quincunx and seperable wavelet-domain wiener filtering[C]∥ Proceedings of the 6th Nordic.Finland:[s.n.].2004:113-116.
  • 7Vrankic M,Sersic D.Image denoising based adaptive quincunx wavelets[C]∥Proceedings of the 2004 IEEE 6th Workshop on Multimedia Signal Processing,Siena:IEEE.2004:251-254.
  • 8Gao H Y,Bruce A G.Waveshrink with firm shrinkage[J].Statistica Sinica,1997,7:855-874.
  • 9Gao H Y.Wavelet shrinkage denoising using the non-negative garrote[J].Journal of Computational and Graphical Statistics,1998,7(4):469-488.
  • 10Donoho D L,Johnstone I M.Ideal spatial adaption by wavelet shrinkage[J].Biometrica,1994,81:425-455.

同被引文献7

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部